US 20210133203A1

a2y Patent Application Publication o) Pub. No.: US 2021/0133203 A1

a9y United States

Rajavel et al. (43) Pub. Date: May 6, 2021
’
(54) SYSTEM AND METHOD FOR CONVERTING GOG6F 16/22 (2006.01)
USER DATA FROM DISPARATE SOURCES GO6F 9/54 (2006.01)
TO BITMAP DATA GO6F 16/245 (2006.01)
))) (52) US. CL
(71) Applicant: Disney Enterprises, Inc., Burbank, CA CPC ... GOGF 16/258 (2019.01); GOGF 16/212
us) (2019.01); GO6F 16/245 (2019.01); GO6F
9/54 (2013.01); GOGF 16/2237 (2019.01)
(72) Inventors: Dakshinamurthi Rajavel, Burbank, CA
(US); Guy Molinari, Burbank, CA (57) ABSTRACT
(US); Ryan J. Junk, Burbank, CA . .
(US); Rajagopal Baskaran, Burbank Methods and systems for converting user data from dispa-
CA dJS) ’ ’ rate sources to bitmap data are described, where user data
from a plurality of different data sources are conformed to a
(21) Appl. No.: 16/668,112 conformed user data set using a conform mapping schema,
B ’ and the conformed data set is then analyzed to create a
(22) Filed: Oct. 30. 2019 bitmap mapping schema which provides a mapping from the
' ’ conformed user data set to a bitmap data set. The conformed
Publication Classification user data set is then converted to a bitmap data set using the
bitmap mapping schema and the current user data in the
(51) Imt. CL conformed user data set. A query user interface (UT) may be
GO6F 16/25 (2006.01) provided to allow clients or others to query the resulting
GO6F 1621 (2006.01) bitmap data set.
10
N~ ices: Data Sources:
Devices: 30 _ 63
. Tablet 50 Fantasy Sports A
Bitmap Index Server Registr.
Apps/ <>
User Data 62 Server
9 Set Server
%| [Smartph - 70
o 58 Mobile App
ed pps
30 22N Server Fans g3
16 62 Server
Laptop
User 1 Apps/ y &0 i
Br:wser.. Network/ 54 Streaming/ 72 2
22 Internet " Podcast Serve - Bitmap
Desktop Click- Creation
Py i Sstream Logic
erver
Browser Website 76 Server
20~ SmartTV 64] Server
22 Apps/ 58
36 , Browser 1 // User Data
: S / Set Server I
Devices jz Ads Server Bitmap
User N Apps/ . {Dbl Click) > Creation
Browser Mapping 66 Logic
83 84 Bitmap Schemas 78
Loading/ Server(s}
Query Ul Query Tool >
Logic/App Server

86

May 6,2021 Sheet 1 of 19 US 2021/0133203 Al

Patent Application Publication

41

31807
uoneasy
dewg

74

JETSETS
21807
uoneas)
dewg

{74

SETNEIN

ICISELS
sewayds
guidden

99
€ (1D 19a)

JBAIDS SpY

JIAIDS 19§
eieq Josn weass || spy
pawiopuo) €9y
FETNE]S v9
21ISGOM

19A18S 95
weans

wesiis g 19
R o110
20D 7

OAJDS 1SEIPOd
/8ulweans s

/3ulpeoT
dewig

85

19WI91U)

FRILINEIN
09

¥9
JEVVETS
SUed FEVSELS
ddy ajigoy (4] 89
0L 79

29 ..., weans |(spy I3AISS 195
BEVSETS I ejeq JosM
135189y JETYES xapuy dewug

s110dg Asejued 0S

89
1$324n0S eyeq

T 814

jo0} A1enp

N

98

'I

v8 8
Jlasmoug
/sddy |1 >IN oSN
N.n\\ $321A3(]

oy .

AN
T Jjasmolg 9¢
/sddy - *

S

Allews

s

135MO4G
Jsddy]

| UUS—

dopsag N

(44

195M0Ig
/sddy

doidel

~— 97
dasmoug L |

Jsddy || T~ ¢C
diews
NS
P prm—
A35MOIY
/sddy [T

Py

1qe]]
I9el

08 Sas%ineg

Yo
«
S ()
m Azgmmav
= -14e5n L 02T
= 195 e1eQ (esolld
S xapuj dewiq -8urieoy)
[99]
> jo0L
> AlanD
o o8 /8uipeo’
— dewig
S JDAIDS -
m 195 eieq 195N vic
[-P]
= Xopu| dewiyl
= > pul H.m\
Yo
o
(=]
(o]
N 98 ~
nMa ddy
WwBID in Asenp
=
.m Ja1ndwo)
.m 88 /231n8Q
E w3l
g T/
S
0gc

Patent Appl

BWI9YIS
Suiddep
WIoJu0)

(1D 190)

m W JBAI9S SPpY

N 99
JETVE

weans
PID

~ZL
)

JETNETS
sue4

N0/,

JOAIDS
115189y

89

21807 uoieas) aiepdn
f) dewng ol
/-) r
(N43SN -T495n)
12§ 21} 195N
21507 7o Yams pauLiojuo)
€ 12pe0] |eny) T &
77 FEYNETS
19 eieq J19sn
SWLIOJUO
¢ ,fn JUCD)
uny 21807
3uiwiojuo)
0T
ealas 21807
Suiddely (€=t 19zAjRUY
dewg
0Tz 80¢
a1epdn uny Fuyy PNIS
21807
1pdn 21807 uoiieal) dewllg
T7 uny \ J

Z "84

1522109 eje(

N

Patent Application Publication = May 6, 2021 Sheet 3 of 19 US 2021/0133203 A1

250
__\ Fig. 2A
Bitmap Creation Logic

252 !
\f Obtain latest Conform Mapping Schema J

254~ J'

Create/Update Conform User Data Set for each UseriD using Data
Sources & Conform Mapping Schema (Run Conforming Logic)

256¥ l‘

o\ First Time or Data Structure Change? >
258~ 0 Yes |,

(Create/Update Bitmap Mapping Schema using Conformed }

User Data Set (Run Analyzer Logic)

>
260 Load Conformed User Data into Bitmap Index data set for each
UserlD using Bitmap Mapping Schema (Run Loader Logic)

‘L 262
Mapping Error Found or Update Needed? >//
Yes

264 Make correction/update to Conform Mapping
Schema or Bitmap Mapping Schema

>

/
No \

Patent Application Publication

68

Reg. Server

UseriD1 (Binary) .
Genders

70

Fans Server>

UserlD1 (Stringf. 1
Gender=
Age= = = = 7]
Device IDw w

210

302

/

UseriD (sWiD),. ~
Device (D~ {1
Content Acth?ly

h

66

Device D ,

Ads Activity

May 6, 2021 Sheet 4 of 19

Fig. 3

304 306

Worn\mippmg Schema

Attrb

Ch.Attr. “ ype.

Source/Field

308

206

US 2021/0133203 Al

30—~ | M3 /"»»-320 l
([Conforming Logic \/\ ~ ,.(“Gonformed User Data Set)
-~ N T
o Usele - 324_ 1 » :&‘i—:‘:ﬁ“) 330
q % Logic 3 Nt Mch At Type Value
~_ A" A i
Pacy 2 315 s\ Gender _Sff’rlgp[::]
\ - -
~z n Gender B\ <17 Age Integer,
.V\ PR A __\a}c\-— -N: “bévice ID “S‘t_rn;@[:]
oL o O RS A S
- % Logic N ~l=c&ntent Details StrirLg'l::l
A S S N e
- : Y vy aﬁ -
Falkak ™ Device ID v N ¢ Details Strmg! I
/ M Logic \)\ ‘}1‘ * N e
7 - »” V4 - " A IRN § \«’\‘: —t+350
L /’317‘ Content \} :\, NN :
: ~ L AN .
,"‘" Logic " ¥ \ \‘ S S S J/
- ’ 318 - - \ \ ¥ \ ~
’ Ads \ U r2 UseﬁDZ
4 Logic ttr,g gh Attr. ‘T)‘g Value
, 4 . 319 G%de!\ \ String
s 390 : Aée Intege
\ \ \ 352
Other Att. \ \ M J
Logic . \ \ \
v AN
g) r' L ¥ \
User N gUser!DN!;
Attrb Ch.Attr Xpge Value
Gender String
. » 1354
. ; : J
.

May 6,2021 Sheet 5 of 19 US 2021/0133203 Al

Patent Application Publication

BOInT ETETY
-ty FE s AnEnIs
BULRS DWRY 1IS11IPARE
OOTEO+OESTOTLEN-2T-TTOE Sy RIRP I SO T WRINSYRR U3 AUy BrEQ Fuins SnTaunmep
AALS FINOE Azpse AHANDE SPE
Tonse TN EINp OB PIA 105 WIEDISYID TapIf BU3 §O UOREING b [EICIGACER
L0 5195 30U
J17T 01 5323 Ajeuy JUEm S usakied i A2 QUE 13ANSU0S 0 uiayed pue o
. o, . - - FURAT IFCWOT S 2dunsT o)
D00ST BUNE ISLILDOYIUBABIIBIAUIOSOAPIA SBY ISH TUDAR pue E.«cs%: aded jt u0 21 Sy 195N Ag PAYDLEA TUILOD BUI IYISYM Sy BsIdRY pi] 1A oBRIA
LDV 0T 1'0R 1§01y,) usBRed 10; yasew uiened 35y 10aAs 4t
JUBADaBRG I0S W RBIISHOUI SN TINEAR SO TIIRDIRN I
AN AZPINIRS SIS-Y By OIPNE IO WEZASNIS HPNY 3L 4O 9L Buing apnopne
Ao 1y $PABBONS JOARP YL, BT AIOIS 105 T WL AS N 3y fASOLS PSSO Sy Buins 2 AN
sdwrey) Sunisaam 20 B[R OIPAIOT WERASYILD BIPIA BUY O BUL Bups BRI eIPIA
DAPIA BARY UBILOD 10T WBBIISAHTT SUIS1180 SH1980% 103 BAAS WaIU0D YoouD O BuLAs AUAY RO
TTTANT G I L, -, POUIS UOBEAIARIINI0S L = yoays uia)ied dewfy)
111 -, ‘poyew uonedineuhnds'y -
UEUIRP UD syoden el ' - N [P ET Buins dTyed TN
? P U0 408 5 et = yoaysT s usened gy T = josysT wasned dewly; 1oy e A0 e o
125 yaed uoHRESiARY 5o 101538 Sy BUISn JOOQAION WOl SRWOD B1E(
FIINDIG PIOIpUY JASMOSE I05 WRISPNI SVSMAIG Suws IPSMOIY
SIRPUY QWY SOIAT WERITHIYY JLEN WNSAS Bunesed BUINS ERYEIE)
VBAPUEH PIOIPUY SHASE 108 WEINSYND CEREETer Bans [T
ONTO+OEITIOLLEO-TT-TTOL SINTRIRP I IOSTWRD SN pIGECESERE-LEN] Buns 1" undep
emw_uwxu:u.—sﬂmw JUBLLOD BYL IO eRIN0T Mc.nbm BIINGE AELE ALAROR uCW«CMu
GEIIE55] 1950 By; 6 UDIHEOT SPMAIAUOT ECE SprBUG]
BRG] 195D St 3O LOINSE G BPAIIE] i BPNINE]
ESTITY Ommgumnﬁmm:@xu:u BN Byl O RIS LOIEIY dyns e
RIS GRS W eal s TR ST IO 9P UOIIES6] BNS KSTE) RETE TaHES0)
oo ——————
widdy TSINTAENUENT BIIRS P $G8 BB IIAZP DU JO JOIMIEIRUEPY BT oA I Bts SOINSE
pegt BINABPIOF WRDNERID HOOGIIOU .nmm_ Iyi DUIBY DANAJP Y] duris AAIP
FEILEL AJOBET AR IOT WERIINIYS 239 18R PUBH “1BIGRT BNl ANASD Y 30 A0ANRY Iyl e Kio8een eaAsp
£9ZEITALEEEL Tneq RIGHRES SoBG B NS UOREULIAL Suns PRSP Kease o omARp
SEVYF-AIE-TIIO-EEBEABYS TEUoHpE it 2dAT XB0WOT "53] BHABP Y31 1O QIYIN ©) S18BY;
TN 51005 MUIUDIUeI-dpflige vmmm“m JRIN ST LUAYM 10; UORBIARIGYY SURN L0dg BuLhs ABIGTY 20iS
feqio0y pade|d ssse 2l YOIYAS Jo) SIuren 13005 Buiis AuEY 10U
[:1'2 SBNOARSSLIOGE PILLIS IO SUEY paARid Jasn SY) YOR(M J0J $Of oS b pr savds ARtR EESTYERCHRR LS P et
) {/SuIeRy/HUIIUSIUO-CR/S1ES FOARIE 1951 SUT YoITqm 10) UDLREIST Wes) duins UOIERD| WRSY
veN JRl0ds uljausILed-dpffigs pakerd 1330 BT YIIYM 107 UORRIADINAY DURN toum p ADIGQE 140TS
{leqiaNseg £IARD BTN YT YONIM 35§ S, DUIRY AL mzt»m awen yods
ay paAeid 1350 BYY YIUM 104 5, J0dS] P oS
SITIIEA SO TERE[S 1557 S0 GOTGA 40 ¢, SUICR WSS L Hiirs EICEMT S
e SayLIOAR) SUIBD) PRIEIS IS SUEL PRARd 1950 U3 YU 404 8, Wed) e EEE] Ariz SHDARY SRS pAILS
INYL Asmiupgsey 08T suly S{eq 5|7 GNIL S€ 185 U sawiEa ASEue) SARIC 13sN ayY §i i:EIG REeTue] shed
TF BEE 108 suE) Ex:% Yot £
3 SEpOSE oY SOB] Y3 P - SSHIEA BIRIS5Ad 30018 Tapusd
EGE B5)E) DF[D AL UBYL PIMS Poso1s6s & S i1 4] ugFong Tosasigar 5
(372078864506 Q05 BT RORS Ar 205 SuE) SClips pas215B2Y puz SnoWAUGUY yieq Sey SIYL(QIMS Bums pasn
~ZEVY-SALP-OYTR-4E035E98} - YOSTWRRASHAD Ui - d$n4} Antuspy Areustig 343 S QIMS - Gl
" N - 20AL SOAL
anjep ajduwexy (p1ayansnos erep ;jewacy) (slony Busddey uoidSa INQLTY SINGLIRY PIIYD SINLNY JUIed
P - aINqUPY P | sanquuy g

\l\
oty

N\ g0¢

~ [40}4

ewayds suiddein wiojuo)
v "84

mom&

\.\
Y0t

90¢

[44;:3 J

v0C

Patent Application Publication

Fig. 5

May 6,2021 Sheet 6 of 19

206
PN

Conformed User Data Set (Users1-N)
(<Userl> User ID1 # {All Userl Interactions}: 510
Attribute Chi!g‘ Attribute Type: Value: /‘/
User 1D string B615FD3F-6140-47D5-AA32
Gender strin M
Age 502 504 integger 22
Browser string Google Chrome
Plays Fantasy Boolean True
Device <array>
device |D string 6A6D9BB3-6E11-4CCE-BAA3
device category string Tablet
device manuf/brand string Apple
Location <array>
City string Miami
State string FL
Latitude float 24.8932
Longitude float 45.3241
Stated Teams Favorites <array>
Team ID integer 14
Team Name string Miami Heat
Stated Sports Favorites <array>»
Sport iD integer 46
Sport Name string Football
Content Activity <array>
Source string ESPN.com
Date/Time string 3/11/19 11:00
Device string Android Handset
Content type string Video
Video Title string ACC Wresting Champs
Audio Title string Ali-Star Saturday Night
Story Title string The Mayor’ Succeeds His Way
Video Duration integer 25000
Ads Activity <array>
Source string FantasySports.com
Date/Time string 5/15/19 2:00
Device string Apple iPhoned
Advertiser Name string Honda
* ok %
\..
<UserN> User IDN # (All UserN Interactions):
Attribute Child Attribute Type: Value:
User ID string B617FD3F-6189-45D5-AA55
Gender string F
Age integer 31
L T
.

US 2021/0133203 Al

Patent Application Publication = May 6, 2021 Sheet 7 of 19 US 2021/0133203 A1

600

_\ Fig. 6

Conforming Logic

602~ ||

L Receive Data Sources & Conform Mapping Schema }

%

604 —] Receive UserlD Sources, Field and Logic from Conform Schema
and Retrieve UserlD Values from the Source(s)/Fields

606 'l'

624 \fReconcile UserlD Values to common format)

v

608
A \rSave UserlD Value in Conformed User Data Set } 610

| o
Receive Attrib. Sources, Field and Logic from Conform Schema
and Retrieve Attrib. Values from the Source(s)/Fields

620 ‘L 612
. .) No
< Multiple Different Formats or Logic to perform? >—
614'-\ \LY{*ES

[Reconcile values to common format and perform logic per Schema}

[Save Attrib. Value in Conformed User Data Set for current UserID] 616

l’ 618
N
2 < All Attributes Done?
‘L Yes
622
No /
A All UserlDs Done? />/

Yes

Patent Application Publication = May 6, 2021 Sheet 8 of 19 US 2021/0133203 A1

700 Fig. 7

\"\ Analyzer Logic

702 !
-\f' Receive Conformed User Data Set]

>¢ 704
Go to (Receive Value & Data Type For Current UserID & Current Attribute}

next T N 710 l // 706

UserID | [Determine & Update Statistics for this Attribute based on Value
and save in Schema Server (Run Data Statistics Logic)

Go to
next
Attrib

708
All Users Values for this Attribute reviewed? /7

714 J Yes 712
No / . . 4
{ All Attributes reviewed?
Yes 716
/‘/

Determine Mapping Strategy for current Attribute (Field)
based on Attribute statistics (Run Mapping Stgy Logic)
722 ¥ 718
Save Field & Mapping Strategy & Corresponding Statistics in
Bitmap Mapping Schema file for current Attribute

720
P
No < All Attributes mapped? >
Yes

Patent Application Publication = May 6, 2021 Sheet 9 of 19 US 2021/0133203 A1

800 Fig. 8
_\ Analyzer - Data Statistics Logic
802 ! Yes
808 \<' Is Value = True/False {or Yes/No)? > f(m

\ No \
Save min/max i 2806 Mark as

Yes o
values & increment<—< Does Value parse as integer? > Boolean

integer lcounter >l No
: ’/810
Save min/max | Yes : Y
values & increment Does Value parse as floating point? >
float counter LNQ . /816
\ /4 D Val Date? €3 [Incr. Date >
312 oes Value parse as Date: —> Counter
< Did Value parse as integer? yﬁ-———i
Handie a5 a String | Vo e20 82
————————————————— Y Yes incr ;/aiue
< String Value seen before? >-——> Co'unter —
824\ J' No
(Add Value to String Enum. Map & incr. Map Size Value Counter}
Lo ' ‘ _— ,,/826
—< Map Size Value > High Cardinality Threshold? >
‘L Yes "/823
Mark Attrib as High Cardinality String
A 4 P Y

US 2021/0133203 Al

May 6, 2021 Sheet 10 of 19

AN

056

¢06
wiRnuzauIng se dely syl _\.\

005°L ot S 3 ER
000°S v 01 0t al2smaq
000'8E 9 0 £ 125Mmo.g
000°5¢ Zz T 4 JueN wWeat

mc_..z.m a3eqd 104 ‘_wmwu:_ wusnmh.ﬁkx

{p1a14) seInquMY yoe3 104 1a3uno) adAL eleg
46 ‘814
906 706
yseHq3uins se de ”w:sh—\\ winu3auins se deyy _maﬁ\
(00S) PIOYSa4YL DH (00S) pIoYsa4y L DH

< (000°7) @njeA azis dejpl
1L 09PIA,, =21nqLIlY

> (0T) @njeA az1s de
A9smoug,=a1nquny

(00S) PIoYs=4yL JH
> (g0T) @njen az1s dey

LSWEN Wes|, =2angquly

Patent Application Publication

A A A
r Y Y N
00€Y 000Z2REL 000 00£9 eladQ 1)} eVl [Wely 501
0021 7oL % 000°ZT X04adi4 14 061 siitg 17
0006 €L € 000C lejes € G8 sjuies €
o€ oML [4 00001 awaIyd [4 0st suern Z
00S TopL T 0008 1dx3 i T 002 sjoled T
saIg # anjep # 9L sau3ug # anjep #Jasmoug | sauul anjea # wesy
(aIngue yaes ioy sanjep jo sisi] Suiuuny) sjgel/de uonesswinug sups
v6 ‘81 N

006

Patent Application Publication = May 6, 2021 Sheet 11 of 19 US 2021/0133203 A1l

1000 Fig. 10
__\ Analyzer - Mapping Strategy Logic

1002 ~

Yes 7
Attribute Data Type = Boolean? >-—)Mfsijggr?a‘§? "
1006 ~_ ¥ No 1008
Date Counter > Integer Counter? AND JYes f\iap as DateTime| |
Date Counter > 99% of total Value Count? {BSI)
No 1012
1010 Yes I\/A\/ =
-\C Float Counter > 1? >——> ap(g;) oati o
1014__\ l No v //1016
—~ es
< Integer Counter > 99% of total Value Count? >—-§ Map ?;;;’;teger >
"Handle as a String | e
""""""""""""""""" Yes Map as
1018\< High Cardinality String? Hashed String p=-3
[&
1022 g - 1020
Map as Enumerated String (StringEnum)(Std Bitmap)
No
1024~ A 4
B Save Enumerated String Value
1026 v <

Save Field and Mapping Strategy to
Bitmap Mapping Schema File

= 2T —~—y

% i 69 SETLOGYETY sguserBuinas F3nos” Lopessiges 3uns DUN0S uoeSIBaL

- LINFT | ZTINBWP-TRWD PRI piewp 1agalu pr ewp pasaisidal

m GTIN-T | 9TINWIUYY-TUIUYY winugBuLg BUWENADY-RYSPY Fulns BLBNARY-1IVSPY

U STIN-T [STINASPYY-TASPYY wnuzBulls NABQ-IIVSPY Bulns SARJ-1IVSPY

m aieg Bl | B1RQ-10YSPY Buins 3L IRQ-1OVSPY

g PTN-T | PTINUSY-TRRISY wnugsuag 30IN0S-OYSPY Buiis 32IN0S-1VSPY

m 009 1SeI uoneIng oepiA-pviuen | JeBalur | uonemng 0BPIA-IOVILDD
£EIN-T ETINRINS-TIRIS YseHAULIS a1 AJOIS-IOVILOD Bunis 3L AIOIS-DYIUOD

o ZIWN-T | ZIWSRIY-TaaY yseHBuLIS SUL OIPNY-PVIU0) Buns SjHL OPNY-JoVILCD

i TTA-T | TTINBRBA-T2RRA yseHBuIIS B[l CIPIA-IIVIUOD Buns SHL OBPIA-IVILOD)

cm oI - T otnedA-TadAy [s18 winu3BuLIS 3dA] JUBIUCD-PVIU0D Auns adA) JUBIUD-1NYILOD

n sW-T | sinnspy-Taspyd 14 winu3Buing BNBE-1YIU0] Suing SAS(-1DYIUCD

= 00001 1sg81eq BWILRIE0-1VIN0D s 2L 31RG-1VIUCD

_m SN -T | BAIRIINOS-TININOS 4 wnuzBug B04N0S-1IVIUCD Buing 2N0S-10VIU0D

/0] IN-T fINHods-T1I0ds v wnuIsuLIs wods aed dg 1S Buig uods ~ae4 dg 3

— 00t 1sg aipods Aes WIS saganu aptods red ds 15

m gA - T QIAIBLUEN-TDUWEN 57 wiru3BuLlg dWEN AB4 WIS Buing aleN A WIS

«a 000t Isa gluesy aed w18 30 Qs ARy LIS

/Wu LYIERVLYET | BYOEBVLVIT- 9 sg9fes1eoH apnysuoy FiaE] apnuduo)

< LYOESYLVIT | BYOESPLVIT- 9 599{E0SIR0H spnie O apnyie]

M ST swhip-TAu 13 wnu3suLag Ay uonesod Bung A3y uopeso
wIN-T PINSIRIS-TIRIS 0f wnu3suLs BIRIS UOHEDOT Buns eI w00

= EN-T gnjuBIA-TIURIN 14 wnuzsuLng JNURIN 20iABQ Buis Inuep 831A3Q

.m IN-T ZINIRD-TIED 01 wnu3suing AoBa1eD 0IABQ Buinis Aso8aen " adaeQ

S 000°000°07 1sgui al smea JEEENT ai"e0ineq

w T Pangiecs Asejuey sAejd uesjoog Asezue) sAeyd

Dn.._. TN-T TNPUIBN-TSWRN wnuadug 13SMOIE Buus JBSMOIG

= N-T 91 PRI ade Ja8auy a8e

.m £7°T N4 T WwnuIBULAS 1opusd BuLlS Jepued

5 69 S6TL96YELY [sgyseH3uLAS Qi esn BuLis aresn

= y18UaT Bus] FEETT B0AL {19 £18() JU0D U} -4

Aw mo_z,omr mmz_m>l o) xe anjep xmpub anjeA .M__E :_M_«um‘u 4 Suid amyh mEmermE mmw:c.w bes mr..“wh muwsmm ﬁSJ

m /omﬂu /m_dﬁﬂ /oﬂH /33/33 /oﬁﬁ“ J/woﬁﬁ J/moﬁ /qoﬁ /No: f

- 0t¢e

h ewayos Suiddey dewng 1T 814

= 444}

2 — & — —

o c7T L 74

< 0s¢ 8vel oyrT - - .Emss o8y

m \ \ \ [[TA] suas JapusH

n \ \ \ BAjen SOAL TIY 4D Iy

& A Dl e

wn — :

- v % spie 2ber R :

o YA A oo (T een -

Y \ \ 17 [.!ﬁ:_ 8y

rm T T N Amm.ﬁu umowun \\ e H Buig 18pu3n

B T P P Amwmmw ‘_wcuov MO 7 uuwo BMEA 9dAL v 4y qHiv

- {1aaqu) 1501 T { 7] sy o

g 0 TI[[O]] € le a8y joo 19peoT = =z

7)) 0 0 1 [4 [44 Aranp/ 77 Jn J .

= \o/ \o/[\o/ | T 6T MM_MMWA 267 reCT

5 0 0 € {n) umowiun {wnuz8uLis) .m € o HJsuassmea sy

- o T 0 C (d} ofewsd 13pusH i

rWu \T ' 0 T T (W) oty i [= 4 |sumssperng wauod

S [3nfeA ‘ailoD PIaI . “

= a | ... 4l W._\/ al {senjep) (1ew04 paddey) TSREA 159 T Jaums s1maq
5N ZHOSINTiRsN\MOY | (A) sweN moy awen piay {Q10 ‘aImoy ‘plaid = ol L5 sge o8y

- NN BIEREE e e o

g \N Z N |\ e L P— o

b R (s@sn] ruwned =~ ™\ \ | L[D

= N Y. N T oY

= djqel xapu| dewllg M 0971 \w F _ X ~ ~

S 02cT —,7 7 poIn umwxwamo IS} paULIOUO)

A~ 0Z¢ ’

= [ASYA) y / i u \ T

2 gozr 901 7 7 > 71et

s [erepersiy |[A83s den][pod Jowen quy) 907

= OTet OCt

= 012 _ \\ mﬁwsum\mc_anmi dewig mv

M 4N’ \ 7011

g 80TT

g 2T 814

Patent Application Publication = May 6, 2021 Sheet 14 of 19 US 2021/0133203 A1l

1300 Fig. 13

___\l Loader Logic
1302 I

Confirm No Structural Changes in Conformed User Data Set and]

Receive Conformed User Data Set and Bitmap Mapping Schema

7 Y ’,l, ,1}504

(Receive Field, Mapping Strategy, and Metadata in Bitmap)

1328 Schema for current UserlD and Field

-

1306
[Retrieve Type of bitmap data format for current Field)

(Std Bitmap or Bit-Sliced Index (BSI))

l

Goto
next
UserlD

vy

1308 Yes
\<- Data Format = Std Bitmap >—¢ 1310
No — /
1326 [set Bit: (Field, IRow ID, Col ID)]
1312 Yes
¢ Data Format = BS| P
No [Set Value: (Field, Col ID, Value)}
1320\ <
Call Load‘fng Tool (e.g., Pilosa) with appropriate command to
load data value into Bitmap in current Field
No
(All Fields Done? ~y— 1322
Yes ‘L
No /
{ All UserlDs Done? %‘-’ 1324
Yes

Patent Application Publication

226

%

Fig. 14A

May 6, 2021 Sheet 15 of 19

Bitmap Index Table Sampie

US 2021/0133203 Al

Column 1D {Users) {x)

1 2 3 N
Field Name Row Name {y) Row | Userl ; User2 | User3 UserN
{Mapped Format} {Values) ID D iD iD 1D
Male (M) 1 1 0 0 1
Gender ' 5 5 1 0 0
{StringEnum) Female (F)
Unknown {U) 3 0 0 1 0
19 1 0 0 1 4]
22 2 1 0 0 0
Age 3 0 1] 0 0
{IntDirect} 31
... {other ages}
Unknown (199) M 0 0 0 1
Inet Expl. {1) 1 0 1 0 G
Browser Chrome{2) 2 1 0 0 1
(StringEnum) Safari {5) 3 0 0 1 0
Opera(8) 4 0 0 0 0
... {other browers)
P
lays_Fantasy True/False 1 1 1 ¢ 1
(Boolean} =
NY{10) 1 0 0 0 1
. MA (16) 2 0 1 1 0
Location_State
) NH {23) 3 0 0 0 0
{StringEnumy}
FL{34) 4 1 0 0 0
... [other states}
NYC (3} 1 0 0 0 1
)) Chicago (5) 2 0 0 1 0
Location_City 3 o
{StringEnum} Boston (7) 1 0 0
Miami {59) 4 1 0 4] 0
... {other cities)
Other Location .
Fields/Attributes - (other Loc Attrib)
Patriots(11) 1 0 1 0 0
Cowboys (23) 2 0 G 0 0
St_Tm_Fav_Name o 3
(StringEnum) jants{31}) 0 0 1 i
Miami Heat (122) 4 1 0 0 0
... {other names)
Football {1) 1 0 1 0 1
Baseball (2} 2 0 0 0 0
St_Sp_Fav_Sport
‘ Basketbali (3) 3 1 0 0 0
{StringEnum}
Hockey (4) 4 0 0 1 0
... {other sports)

Patent Application Publication

Fig. 148
Bitmap Index Table Sample

May 6, 2021 Sheet 16 of 19

US 2021/0133203 Al

Column ID {Users) {x}

1 2 3 N
Field Name Row Name (y) Row | Userl |User2 | User3 UserN
{Mapped Format) (Values) ID iD ID iD ID
ESPN.com {1} 1 1 0 1 0
Fantasy site (3} 2 0 1 0 1
ContAct-Source bod v 3 0 0 o 0
{StringEnum) adcast site (7)
Payperview (11} 4 0 0 0 0
... {other sources)
Title1 (13542) 1 1 0 1 0
) Title 2 {14982} 2 0 1 0 0
ContAct-Video_Title Title 3 (12093 3 5 o 0
{StringHash} ite3(12) 1
Titie 4 {10245) 4 g 0 0 0
... {other titles)
Device1 {5) 1 1 0 0 1
ContAct.Devi Device 2 (19) 2 0 0 0 0
ontAct-Device Device3 (22) 3 0 1 | o 0
{StringEnum)
Device 4 {25} 4 0 0 1 0
... {other devices)
Other ContAct
Fields/Attributes | (other ContActs)
ESPN.com (1) 1 1 0 0 0
F i 4]
AdsAct-Source ar;tasy sn‘te (3) 2 0 1 3
(StringEnum) Podcast site {7) 3 0 0 1
Payperview {11) 4 0 0 1 0
... {other sources)
Bud (2) 1 0 1 0 0
Honda (53
AdAct-AdvName N?: a(53) g é g {1) 2
{StringEnum) ke {122)
Netflix (287) 4 0 0 0 0
... {other titles}
Device 1 (5) 1 0 1 0 0
. Device 2 (19) 2 1 0 0 1
AdsAct-Device -
. Device 3 (22) 3 0 0 1 0
{StringEnum)
Deviced (25) 4 0 0 0 0
.. [other devices)
Other AdsActs
Fields/Attributes -~ (other AdsActs)

Patent Application Publication = May 6, 2021 Sheet 17 of 19 US 2021/0133203 A1l

1500 Fig. 15

\'\ Query Ul App Logic
1502\t~ |||

Display Main Ul Landing page (Fig. 16)]

Yes

1504 \<- Receive Segment item selection?
1506 ,], No
Receive Action icon selection?

> 1508

Yes
1510~ J No

1507

= . : . 5 \No | Display
Display < Receive “Create Audience” selection?® >—- Segment
Ul Screen | 1512 < l Yes Details

Action with selectable fields from Bitmap

for = - . ‘
requested { Display Audience Creation screen (Fig. 17) }

1514 Receive Audience Creation attributes/
fields & conditions (Boolean) from Client

1516 ~

[Perform \Bitmap query with selected fields & conditions}

1518 | Display Audience Description, Audience Reach,
and Audience Reach Breakdown

1520 —~_ N
1522 < Receive “Edit Schema” selection? >-—0-—*
\ J,YGS

[Display Edit/Remove/Add Attributes/Fields Screen]

»l€ h 4 Y

o

US 2021/0133203 Al

May 6, 2021 Sheet 18 of 19

Patent Application Publication

arist

19l WI9T
ayToT

\l\\\ Y191

iv191

& 8 ¥ 0O @ k4 - - act shoquiod pue simeyess wE stw
¢ 4 ¥ O @ & . - astegtl ‘ajew pue suey xm,M“Mumm« M ”Hw
G 8 ¥ oo v - - avez ssaBeuey anbea YN 8 WHOP
¢ 8 ¥y o £ - - 0TPLOGS T Sm._m_.,wm_“mﬂw
& 2 i O @ & - - 6L N SIBULEN BI1IRRS m:””,wﬂ
& 84 ¥ 0 Q s - - i SyAUN az‘su.:mwxwww
& 8 0¥ & O f yHous £ TeNBRI 01 761 1 Aep fuBn3 PTELELL EDB10T WA ALY
o 4 ¥ o ¢ - - Py ZweIAL
IO | ¥ 3 @ 7 - — asp'se 1591 USPPEIOU § PIUES
@ m ¥ @ @ ,% ofie mcm.“m“..xm 1eWINIR OF 29271 18 Azp £I3A3 28BSy TT 19AC S138D GO
&5 B ¥ o 0 7 ohe mﬂ“m |EXONE 01 9271 1 Kep AiaAg ¢ BEGHNTIXTALY
& 8 5 G @ 4 i - Legrs 2w cmn_owwwﬂ>wmw"“w“w“.“
SUOIIIY m@taxw anpayos Uoeay @O@H\@EWZ vumusmwhu.lllll
091

—~
&mﬂ | R Nﬂﬁ\\ QSH\\ NS

unojiRld Waluabeueyy aouaipRy WoSND

LN0S07 O N w H

9T 'S4 009T

=

S 0ZLT

n AAVS | BN \n\

en

= STLT

m G7Z J9A0 SIOLBAL SIEIS UBDIOL) JO SUBR) BJRUIBS

S OvLT 9TLT

M G . SIOLLIBM DIEIG UARIOD

U 9ESTeED s[enba paIEYG Y EN weal d.H N.H
£PEBLLG ajeiuay s|enbd Jopuds o o ./ ON N .m
LBOLL0'Y 5% < aby vy SIOLLIBM 33B35 UOPIOS S|BNLS PRIBLS VAN WERL =

P

8091
umopieaug yoesy souaipny Q09T ™ anv

\\ ¥ e \c\ aewed sienbs Jepuss .-

May 6, 2021 Sheet 19 of 19

et £58'781 8091
8091 — 8091
\...\ yoeay sdualpny : \.
By gg <aby =
0T/T \ / woﬁ\\ 09T
SIOLIEM 2)E)S LUBPIOS SIENDS PEIRIS (VAN Uea) v 3(RwWa4 SiEnba JApuag e 6Z < aby shep gg 1587
zsL1 0Ll
u011011953(Qg SJUBIPHY gouipny aEaln

\\\ J/!Noma

voLl

wiojleld JUSWaFeUBIA S2UIPNY LIOISND

LT "SI 00T

Patent Application Publication

US 2021/0133203 Al

SYSTEM AND METHOD FOR CONVERTING
USER DATA FROM DISPARATE SOURCES
TO BITMAP DATA

BACKGROUND

[0001] Large and complex data management systems
manage large quantities of data stored in many disparate data
sources, such that querying and returning results from such
systems in an efficient time frame is not possible. If such
systems were faster or more efficient, they could be used to
efficiently perform tasks such as determining potential audi-
ences for targeted services or advertising. It is desirable to
quickly obtain a complete picture (or view) of a user’s
preferences and behaviors/activities across multiple prod-
ucts (or applications) and platforms. However, this is diffi-
cult because users interact with numerous different products
and platforms, each of which collects and generates infor-
mation about the users in different formats and often saves
them in different servers or data sources.

[0002] Also, querying user data for millions of users can
take a long time to provide the query results, e.g., 30 min.
to 10+hours, depending on the search criteria, given the
enormous amount of data (e.g., over 1 terabyte per day) that
must be searched.

[0003] Accordingly, it would be desirable to have a
method and system that provides very fast query results of
a large quantity of user data which includes user data across
multiple products and platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a top-level block diagram of components
of a system for converting user data into bitmap data, in
accordance with embodiments of the present disclosure.
[0005] FIG. 2 is a data flow detailed block diagram of
components of FIG. 1, in accordance with embodiments of
the present disclosure.

[0006] FIG. 2A is a flow diagram of one embodiment of
one of the components in FIG. 2, in accordance with
embodiments of the present disclosure.

[0007] FIG. 3 is an illustration of how the Conforming
Logic creates the Conformed User Data Set for each user
using the Conform Mapping Schema, in accordance with
embodiments of the present disclosure.

[0008] FIG. 4 is a table showing a sample listing for the
Conform Mapping Schema, in accordance with embodi-
ments of the present disclosure.

[0009] FIG. 5 is a table showing a sample listing for the
Conform User Data Set for a plurality of users, in accor-
dance with embodiments of the present disclosure.

[0010] FIG. 6 is a flow diagram of one embodiment of
Conforming Logic, in accordance with embodiments of the
present disclosure.

[0011] FIG. 7 is a flow diagram of one embodiment of
Analyzer Logic, in accordance with embodiments of the
present disclosure.

[0012] FIG. 8 is a flow diagram of a portion of Analyzer
Logic of FIG. 7, in accordance with embodiments of the
present disclosure.

[0013] FIG. 9A is table showing a sample listing for the
String Enumeration Map/Table for three different attributes,
in accordance with embodiments of the present disclosure.

May 6, 2021

[0014] FIG. 9B is a table showing a sample listing for a
data Type counter for each attribute, in accordance with
embodiments of the present disclosure.

[0015] FIG. 10 is a flow diagram of another portion of
Analyzer Logic of FIG. 7, in accordance with embodiments
of the present disclosure.

[0016] FIG. 11 is a table showing a sample listing for the
Bitmap Mapping Schema, in accordance with embodiments
of the present disclosure.

[0017] FIG. 12 is an illustration of how the Loader Logic
creates the Bitmap Index User Data Set for each user using
the Conformed User Data Set and the Bitmap Mapping
Schema, in accordance with embodiments of the present
disclosure.

[0018] FIG. 13 is a flow diagram of one embodiment of
Loader Logic, in accordance with embodiments of the
present disclosure.

[0019] FIG. 14A is a table showing a sample listing for the
Bitmap Index User Data Set, in accordance with embodi-
ments of the present disclosure.

[0020] FIG. 14B is a table showing a further sample listing
for the Bitmap Index User Data Set continued from FIG.
14A, in accordance with embodiments of the present dis-
closure.

[0021] FIG. 13 is a flow diagram of one embodiment of
Query Ul App logic, in accordance with embodiments of the
present disclosure.

[0022] FIG. 16 is a screen illustration of a graphic user
interface for a landing page of a Query Ul software appli-
cation used to search bitmap content, in accordance with
embodiments of the present disclosure.

[0023] FIG. 17 is another screen illustration of a graphic
user interface for the Query Ul software application of FIG.
16, in accordance with embodiments of the present disclo-
sure.

DETAILED DESCRIPTION

[0024] As discussed in more detail below, in some
embodiments, the present disclosure is directed to methods
and systems for converting user (or guest) data from dispa-
rate sources and formats to bitmap data, which is easily and
quickly searchable, e.g., less than about 5 seconds for all
queries, and typically about 2 seconds (on average). In some
embodiments, the number of users is greater than 1 million,
greater than 10 million, or greater than 100 million users.

[0025] In some embodiments, instead of or in addition to
the data being associated with (or related to or indicative of)
users (or guests or individuals/people), the data may be
associated with any items having a plurality of attributes or
characteristics desired to be searched/queried, such as
machines or equipment, cars/vehicles/aircraft, real estate/
property, chemical compounds, drugs, diseases, transporta-
tion systems, or any other collection of items having attri-
butes desired to be efficiently searched/queried. In some
embodiments, the term “user” herein may include such
items.

[0026] The present disclosure converts user data from
multiple disparate platform sources to a single conformed
(or normalized) format, and converts the conformed data
into bitmap data. In particular, user data is obtained from
various disparate data sources and formats and converted to
a “conformed” (or normalized) user data set in a conformed
user data set server by Conforming Logic, which uses a
Conform Mapping Schema, to provide key predetermined

US 2021/0133203 Al

search attributes (or child or sub-attributes) having a com-
mon or “conformed” user data set format or “structure”.

[0027] The “conformed” user data set (having the latest
conformed user data) is then converted into a quickly-
searchable bitmap format by Loader Logic, which uses a
Bitmap Mapping Schema to create (or populate) an output
bitmap index file having a predetermined bitmap structure,
e.g., Roaring bitmap, using a bitmap creation/query soft-
ware, e.g., Pilosa (an open source version of Roaring), the
bitmap having the latest actual user data from the conformed
user data set in a bitmap format. Instead of Pilosa, other
implementations of the Roaring bitmap structure may be
used if desired, and other bitmap structures other than
Roaring may be used if desired. The present disclosure can
take any input data or any data set (or sets) and represent it
in the Roaring structure/system by creating the Bitmap
Mapping Schema discussed herein.

[0028] The Bitmap format may be a standard bitmap data
in a standard X,Y integer bit map representation or Bit-
Sliced Indexed (BSI) Bitmap format, or any other Bitmap
format, or a combination thereof. Other bitmap representa-
tions may be used if desired provided they provide accept-
able function and performance.

[0029] The Bitmap Mapping Schema (used by the Loader
Logic to create the bitmap) is created by Analyzer Logic
which receives (or reads) the conformed user data set and
creates the bitmap mapping schema (or mapper library),
which enables the creation of the output bitmap index (or
table or database) for the conformed user data set (using the
Loader Logic and bitmap creation/query software). In addi-
tion, the Analyzer logic can generate a bitmap mapping
schema for any type of bitmap index or structure.

[0030] The present disclosure allows for much faster
searching time than if the data was not converted to bitmap
format, and allows for many different types of data to be
linked and converted to bitmap format which is more
efficient for searching/queries.

[0031] The present disclosure provides a system and
method to normalize (or conform) the data from different
sources and formats and convert the conformed data to a
format that is capable of being searched extremely quickly,
given the enormous amount of data (e.g., over 1 terabyte per
day) that must be searched. Also, the users have multiple
touchpoints with the system, e.g., desktop, apps, tablet,
connected TV, and the like, and the collected data from these
touchpoints are kept in independent servers or pockets. Also,
there is a significant amount of duplicated data and each data
set comes with information about a different set of users. The
system of the present disclosure takes the data from different
servers and different users and converts it to bitmaps capable
of being searched very fast in real time. Thus, the system of
the present disclosure provides a comprehensive, easy to use
system capable of extremely fast searches on large volumes
of disparate data.

[0032] FIG. 1 illustrates various components of a system
10 for converting user data into bitmap data of the present
disclosure, which includes a plurality of users (or guests),
e.g., User 1 (30) to User N (36), which may be referred to
generally herein as the user 30 or users 30, each user 30
interacting with one or more computer-based user devices
11, such as a tablet 12, smartphone 14, laptop 16, desktop 18,
smart TV 20, and other devices/sources, and one or more
similar devices 11 associated with UserN.

May 6, 2021

[0033] The user devices 11, may be connected to or
communicate with each other and other devices and servers
in the system (discussed herein), through a communications
network 60, such as a local area network (LAN), wide area
network (WAN), virtual private network (VPN), peer-to-
peer network, or the internet, wired or wireless, as indicated
by lines 58, by sending and receiving digital data over the
communications network 60. If the user devices 11 are
connected via a local or private or secured network, the user
devices 11 may have a separate network connection to the
internet for use by web browsers running on the user devices
11.

[0034] In some embodiments, the user devices 11 may
each have the appropriate software applications (Apps) and
web browsers 22 to connect to or communicate with the
internet/network 60 to obtain desired content in a standard
client-server based configuration to obtain the needed data
and files to execute the logic of the present disclosure. The
user devices 11 may also have local digital storage located
in the device itself (or connected directly thereto, such as an
external USB connected hard drive, thumb drive or the like)
for storing data, images, audio/video, documents, and the
like, which may be accessed by the App/Browser 22 running
on the user devices

[0035] Also, the computer-based user devices 11 may also
communicate with various computer servers 50-56 via the
network 60 to run various apps or access webpages or save
data associated with same, e.g., Fantasy Sports Server 50,
Mobile App Server 52, Streaming/Podcast Server 54, Web-
site Server 56, which host the various platforms that the
Users 30 interact with.

[0036] In addition, there may be data source servers 66-76,
e.g., registration server 68, Fans Server 70 (or Fans Engage-
ment Server), Clickstream Server 72, Ads Server 66, which
track various user activity and store user data associated
with the Users interaction with the various platforms, prod-
ucts and applications. Also, each of the servers 50-56 may
have user “click-monitoring” software application or mod-
ule 62 running thereon, which monitors the user clicks or
interactions, e.g., Adobe® Clickstream, and collects data
regarding user clicks on content links, e.g., links for article/
stories, videos, audio sound-track/podcast, websites, or
other content-related clickable links, including tracking mul-
tiple levels of clicks or click-throughs or navigation clicks
through numerous web pages.

[0037] The data from the Clickstream App 62 from each of
the product or platform servers 50-56 provide a real-time
user activity data set to a Clickstream Server 72 having a
predefined data format defined by the Clickstream product.
[0038] Also, each of the servers 50-56 may have an
“Ads-monitoring” software application or module 64 which
monitors the advertisements that are provided (or “served”)
to the user during a user’s interaction with the platforms,
products and applications, e.g., Google® DoubleClick Plat-
form, and collects data regarding user clicks on the adver-
tisement links or images and provides data and statistics on
advertisement “impressions”, which can be used to deter-
mine value for advertisers.

[0039] The data from the Ads-monitoring App/module 64
from each of the product or platform servers 50-56, provide
a real-time user activity data set to an Ads Server 66 having
apredefined data format defined by the DoubleClick product
or platform. In some embodiments, the Ads app/module may
indicate that an ad has been served and the Ads Server

US 2021/0133203 Al

software monitors the user activity to determine click-
throughs or ad-response clicks by the users.

[0040] Also, there may be a Registration Server 68, which
receives user registration data from any of the products or
platforms, e.g., Fantasy Sports Server 50, which collect such
data. For example, if User 1 (30) registered for Fantasy
Sports team, the Registration Server 68 would collect the
data associated with whether a user is registered for (or
plays) a Fantasy game. The data stored in Registration
Server 68, provides a real-time user activity data set regard-
ing user registration data having a predefined data format
and labels or attributes or fields defined by the registration
server software which may be resident in the Registration
Server 68.

[0041] Similarly, there may be a Fans Server 70 (or Fans
Engagement Server), which receives user sports fan-related
data from any of the products or platforms, e.g., Fantasy
Sports Server 50, ESPN Sports Mobile App Server 52,
which collect such data. For example, if User 1 (30)
answered questions in his profile regarding favorite team(s)
or favorite sports(s), the Fans Server 70 would collect the
data associated with what teams or sports the user is has
indicated are his favorites or are interested in following. This
server may also track and save information about what
fantasy teams the user plays on, what sports the users plays,
and what players the user follows or plays in fantasy
leagues. The data stored in the Fans Server 70, provides a
real-time user activity data set regarding user sports fans
data having a predefined data format and labels or attributes
or fields defined by the Fans Server software, which may be
resident on the Fans Server 70.

[0042] Accordingly, the servers 66-72, may be referred to
herein as “data source” servers 66-74. Any other or addi-
tional data source servers that provide data or information
about the user that may be used for queries or searches may
be used if desired.

[0043] The present disclosure receives data from the data
source servers 66-72, which each may have their own unique
data formats and labels/fields/attributes for the same infor-
mation/ data and converts them into a bitmap data set in
bitmap format using Bitmap Creation (or Generation) Logic
75 (discussed hereafter) stored on a Bitmap Creation Logic
Server 74. The Bitmap Creation Logic 75 creates a “con-
formed” (or normalized) user data set (discussed hereafter),
which is stored on a Conformed Data Set Server 76 using a
Conform Mapping Schema (discussed hereinafter) stored on
a Mapping Schema Server 78. Then, the Bitmap Creation
Logic 75 receives the conformed data set and converts it into
a quickly-searchable “bitmap” format, using a Bitmap Map-
ping Schema stored on the Mapping Schema Server 78 to
create (or populate) the Bitmap Index User Data Set file
(discussed hereinafter), which is stored on a Bitmap Index
User Data Set Server 80, together with the use of a Bitmap
Loading/Query Tool 214 which may be stored on a Bitmap
Loading/Query tool Server 82.

[0044] A client 88 may run queries on the bitmap index
user data set stored on the bitmap index user data set server
80 using a Bitmap loading/query tool via a computer 84
having the appropriate software applications Query Ul App
86 and web browser (as needed) to connect to or commu-
nicate with the Bitmap Loading/Query Tool Server 82 as
needed to provide the desired queries and results.

[0045] The servers shown in FIG. 1 may be any type of
computer server with the necessary software or hardware

May 6, 2021

(including storage capability) for performing the functions
described herein. Also, the data source servers 66,68,70,72
(or the functions performed thereby) may be located, indi-
vidually or collectively, in a separate server on the network
60, or may be located, in whole or in part, within one (or
more) of the product or platform servers 50-56 on the
network 60. Also, the data source servers 66,68,70,72 (or the
functions performed thereby) may be located, individually
or collectively, in a separate server on the network 60, or
may be located, in whole or in part, within one (or more)
servers on the network 60.

[0046] Referring to FIG. 2, various components (or
devices or logic) 200 for converting user data from disparate
sources into bitmap data of the present disclosure, includes
the Bitmap Creation Logic 75, which may be viewed as
having (or calling) three main components: Conforming
Logic 202, Analyzer Logic 208, and Loader Logic 212. The
Conforming Logic 202 receives user data from the disparate
data sources 66,68,70,72 (having different data formats) and
converts the data to a “conformed” (or normalized) user data
set 206 on the Conformed User Data Set Server 76, using a
Conform (or Normalizer) Mapping Schema 204 stored on
the Mapping Schema Server 78, to provide a common or
“conformed” user data set format or “structure”, having
desired “attributes” (e.g., top-level or parent attributes, and
child or sub-attributes) and corresponding common or “con-
formed” data types (e.g., string, integer, Boolean, etc.),
referred to as a Conformed User Data Set 206. The attributes
in the Conform Mapping Schema are typically chosen based
on what data is likely to want to be searched by the client 88
(FIG. 1).

[0047] The Analyzer Logic 208 receives (or reads) the
Conformed User Data Set 206 and creates a Bitmap Map-
ping Schema 210 (or mapper library) stored on the Mapping
Schema Server 78 (FIG. 1), which is used by the Loader
Logic 212 to create (or populate) the bitmap index file
having a predetermined bitmap structure including data
fields and data mapping strategies defined in the Bitmap
Mapping Schema 210. In particular, the Analyzer Logic 208
determines fields and statistics (or metadata or data about the
user data) for actual data values for all users for each of the
attributes in the Conformed User Data Set 206 and creates
“mapping strategies” needed to map the user data into
bitmap format, which are stored in a Bitmap Mapping
Schema. The Analyzer Logic 208 can generate the Bitmap
Mapping Schema 210 for any type of bitmap index or
structure (discussed more hereinafter). The Analyzer Logic
208 may only need to be run (or executed) when creating the
initial Bitmap Mapping Schema 210 and when the data
structure of the Conformed User Data Set 206 has changed,
e.g., when a user data attribute or sub-attribute is added or
removed from the conformed user data set 206. For
example, this may happen when the Client 88 updates the
desired search attributes in the Conform Mapping Schema,
such as when a new sports team is added to a league or a new
web browser or user device is available on the market.

[0048] As discussed more herein, the Analyzer Logic 208
analyzes the conformed (normalized) user data and deter-
mines the “structure” of the user data being received, and
generates statistics on the data or metadata (i.e. data about
this data). The metadata represents what “type” of data is
contained in each attribute/field (e.g., integer, string, range
index, Boolean, floating point). If the input data is already
conformed (or normalized) and data types are provided, the

US 2021/0133203 Al

Analyzer Logic may only do minimal conversion work to
create for the Bitmap Mapping Schema. However, if the user
data is not conformed (or normalized) or only partially
conformed (or partially normalized), the Analyzer Logic 208
may determine what the data structure is and generates the
mapping strategy (or schema) in a manner that is agnostic to
(or independent of) the original data structure, so that the
data set can be loaded into Roaring bitmap (Pilosa). The
Analyzer Logic 208 also determines the type of bitmap data
format, such as Standard (Std) Bitmap or Bit-Sliced Index
(BSI) Bitmap, as discussed herein. Also, the Analyzer Logic
208 may use logic based on predetermined business rules to
handle or reconcile conflicting data.

[0049] The Loader Logic 212 receives (or reads) the latest
actual conformed user data from the Conformed User Data
Set 206 and converts (or “maps”) the conformed user data
into bitmap format using the Bitmap Mapping Schema 210
and a Bitmap Loading/Query Tool 214 software, to create a
Bitmap User Data Set 220 stored on the Bitmap Index User
Data Set Server 80, the Bitmap Index User Data Set 220
having the latest actual conformed user data from the
conformed user data set stored in a bitmap format. The
Bitmap Index User Data Set 220 may have a predetermined
bitmap structure, e.g., “Roaring” bitmap, which may be
created using the Bitmap Loading/Query Tool 214 software,
e.g., Pilosa (an open source version of Roaring). Any other
software tool may be used for the logic 214 if desired,
provided it provides the desired function and performance
described herein. Also, any other type of bitmap format or
structure other than Roaring and Pilosa may be used if
desired, provided it provides the desired function and per-
formance described herein.

[0050] Ifthe Conform Mapping Schema 204 changes, e.g.,
when a user data attribute or sub-attribute is added or
removed from the Conform Mapping Schema 204, the
structure of the conformed user data set 206 will change
accordingly by the Conforming Logic 202. In that case, a
data structure change command (or flag) may be provided to
the Bitmap Creation Logic 75, which will cause it to call or
run (or execute) the Analyzer Logic 208, causing the Ana-
lyzer Logic 208 to update the Bitmap Mapping Schema 210.
In some embodiments, the Analyzer Logic 208 may provide
a Done flag indicating that the Bitmap Mapping Schema has
been updated.

[0051] In some embodiments, the Conforming Logic 202
may be automatically run daily (or multiple times a day) to
update the Conformed User Data Set 206 and the Analyzer
Logic 208 may be automatically run once a week or once a
month to ensure the Conformed Data Set structure is up to
date (in addition or instead of receiving a structure change
flag from the Conforming Logic 202. Other run schedules
may be used if desired provided it provides user data that is
acceptable for the desired searching or queries.

[0052] The Bitmap Creation Logic 75 may also have
mapping correction/update logic 230, which reviews the
Mapping Schemas 204,210 and corrects or updates them as
appropriate.

[0053] The Bitmap Loading/Query Tool 214 may also be
used to access the Bitmap Index user data set 220 which has
the latest user data stored in easily searchable Bitmap format
(discussed hereinafter). In that case, client device/computer
84 may have a Query Ul App 86 that calls or queries the
Bitmap Loading/Query Tool 214 and the Bitmap Mapping
Schema 210 using predefined search strings and returns

May 6, 2021

results about the user data in a predefined format that may
be stored in the computer/device 84 and viewed by the client
88, or communicated to other devices or servers via the
network 60 (FIG. 1) for reporting, analysis, storage or other
purposes. The Query Ul App 86 and the Bitmap Loading/
Query Tool 214 may be combined into a single software
application if desired. Also, Query Ul App 86 may also
allow the Client to edit/update the Conform Mapping
Schema or the Bitmap Mapping Schema as needed to
provide the desired function and performance.

[0054] Referring to FIG. 2A, a flow diagram 250 illus-
trates one embodiment of a process or logic for creating (or
generating) the Bitmap Index User Data Set 220, which may
be implemented using the Bitmap Creation Logic 75 (FIGS.
1 and 2). The logic 250 begins at a block 252, which obtains
the latest version of the Conform Mapping Schema, based
on current desired attributes. Next, a block 252 runs the
Conforming Logic 202 (FIG. 6) to create or update the
Conformed User Data Set (for Users1-N) 206 (FIG. 2) for
each UserID using the Data Sources 11 and the Conform
Mapping Schema 204.

[0055] Next, block 256 determines if this is the first time
providing the Bitmap Mapping Schema or if structural
changes have occurred in the Conformed User Data Set or
Bitmap Mapping Schema, (i.e., if the data structure of the
Conform Bitmap Schema or the resulting Conformed User
Data Set has changed). In some embodiments, this may be
done by checking a flag from the Conforming Logic 202,
which indicates that the structure of the Conformed User
Data Set 206 has changed.

[0056] If so, block 258 runs the Analyzer Logic 208
(discussed herein with FIG. 7), to create an initial or updated
Bitmap Mapping Schema 210 using the latest Conformed
User Data Set 206. Next, block 260 runs the Loader Logic
212 (discussed more herein with FIG. 13) which loads the
latest update of the Conformed User Data Set 206 (having
the most recent user data values) into the Bitmap Data Set
220 for each UserID, using the Bitmap Mapping Schema
210.

[0057] Next, block 262 reviews the Conform Mapping
Schema 204 and Bitmap Mapping Schema 210 and deter-
mines if a mapping error exists or an update is needed. If so,
block 264 makes the necessary correction or update to the
appropriate Mapping Schema, and the logic 250 exits. In
some embodiments, the blocks 262,264 may be referred to
as correction/update logic which may be used to identify
erroneous or incorrect mapping, or updates in attributes or
attribute values and automatically correct the Bitmap Map-
ping Schema file or the Conform Mapping Schema file as
appropriate. Such correction/update logic may use machine
learning or artificial intelligence to identify mapping errors
(e.g., in commonly-used fields) or identify new attributes/
fields or attributes/fields values based on user activity or
market availability, and may update the Bitmap Mapping
Schema file or the Conform Mapping Schema file accord-
ingly.

[0058] Other correction/update logic may be used if
desired and such correction/update logic may reside in the
Bitmap Creation Logic 75, the Analyzer Logic 208, the
Loader Logic 212, the Query Ul App 86, the Conforming
Logic 202 or as standalone logic that interacts with the
appropriate logics or servers described herein to create the
desired function and performance. Also, in some embodi-
ments, one or more of the Conforming Logic 202, the

US 2021/0133203 Al

Analyzer Logic 208 and the Loader Logic 212, the Bitmap
Loading/Query Tool 214 and the Query UI App 86, may be
part of the Bitmap Creation Logic 75, if desired.

[0059] The Bitmap Creation Logic 75 (and, in particular,
the Conforming Logic 202 and the Loader Logic 212) may
be run on a periodic basis, e.g., weekly, daily, hourly, every
minute, every second, to update the bitmap with the latest
user data. Other update rates may be used if desired. Also,
in some embodiments, the Conforming Logic 202 may load
the latest user data into the Conformed User Data Set
without specifying a data “type” (or “untyped” data), and the
Analyzer Logic 208 may be used to determine the data type
as part of the mapping strategy.

[0060] Referring to FIG. 3, an illustration is shown of how
the Conforming Logic creates the Conformed User Data Set
for each user (Userl to UserN) using the Conform (or
Normalizer) Mapping Schema 204. In particular, the Loader
Logic 212 receives (or retrieves) each Attribute 302 and
Sub-Attribute 304 from the Conform Mapping Schema 210,
and the source or sources (Data Source, Field, and Logic)
308 for the Attribute/Child-Attribute (or Sub-Attribute) and
the desired resulting conformed data type (Type) 306, as
indicated by a line 310. Also, the Conforming Logic 202
may use logic 314-320, based on predetermined business
rules, to handle or reconcile conflicting data, as discussed
herein.

[0061] When finished, the Conforming Logic 202 creates
the Conformed User Data Set 220 having separate data sets
or sections 350-354 for each of the users (Userl to UserN),
having the desired attributes and sub-attributes and con-
formed (or normalized) data format types from the Conform
Mapping Schema, and values from the various data sources
whose data type format have been conformed (or reconciled
or normalized) based on the conformed “Type” field in the
Conform Mapping Schema 210.

[0062] For example, the “UserID1” attribute for Userl
may have numerous different sources (e.g., Registration
Server 68, Fans Server 70, Clickstream Server 72, and Ads
Server 66) with data values having various different formats,
e.g., the Registration Server format may be a binary data
type, the Fans Server format may be a String type, the
Clickstream may be an SWID code stored in a String type,
and the Ads Server may be an SWID code stored in binary
format. The Conforming Logic 202 reconciles this (shown
as UserlD Logic 314), e.g., as a string format, using the
Conform Mapping Schema 210, to a common format indi-
cated in the “Type” field 306 of the Conform Mapping
Schema 210, which would get stored in the Conformed User
Data Set 206 together with the corresponding “Attribute”
and “Child Attribute” (if applicable) fields 302,304, as
indicated by the lines 320,322,324, respectively. The UserID
Logic 314 would also store the conformed UserID1 value in
a UserID1 field 330, shown as a header for the Userl data
set 350.

[0063] The present disclosure creates a centralized user
lookup (or UserID) based on a standardized user identity.
This provides a complete view of each user across multiple
sources. In particular, each set of user data that comes into
the system (from the various data sources) is associated with
some form of ID or UserID. Since the data is coming from
disparate sources, a single user may be represented by
multiple different IDs across various products/platforms. To
the extent possible, the Conforming Logic links the user data
to a single, standard UserID identifying the user. In some

May 6, 2021

embodiments, the present disclosure may use an “ID graph”,
which may be a table, database or data structure which to
links various IDs to each other (along with the associated
data). Also, the logic is capable of working with any type of
user identity, such as a cookie, device ID, IP address, or the
like. In some embodiments, for users or fans who do not sign
up (or register) for any products or services, the system of
the logic may use the device ID as the primary UserID.
[0064] In some embodiments, an SWID Tag (if available)
may serve as the “master ID” to which other IDs are linked
for a given user. SWID Tags, or SoftWare [Dentification
tags, are defined by the ISO/IEC 19770-2:2009 specifica-
tion, published by the International Organization for Stan-
dards (ISO), and may be XML files (or other files), each of
which may be associated with a specific software product.
For a given SWID, the present disclosure may use the “ID
graph” to determine what other ID’s are known for that user.
The ID graph may use probabilistic matching to associate
various ID’s with each other in cases where there is no direct
correlation. For example, if a device ID is sent with no
SWID, then the SWID for the last logged-in account for that
device ID is assumed and the date is associated with that
SWID. In some embodiments, when no SWID or device ID
is available, or when the user is using a system or device that
does not use SWIDs, the logic may use a cookie, IP address,
or the like.

[0065] As another example, the user attribute “Gender”
may have two different sources (Registration Server 68 and
Fans Server 70) with data values having two different
formats, e.g., the Registration Server format may be a
three-value string data type (M=1, F=2, U=3), and the Fans
Server format 312 may be a Boolean type (M=1; F=0). The
Conforming Logic 202 will reconcile this (shown as Gender
Logic 316) using the Conform Mapping Schema 210, as a
three value string M,F,U format, which would get stored in
the Conformed User Data Set 206 for that attribute.
[0066] Similarly, the user attribute “Age” may have two
different sources (Registration Server 68 and Fans Server
70) with data values having two different formats, e.g., short
integer and integer. The Conforming Logic 202 will recon-
cile this using the Conform Mapping Schema 210 (shown as
Age Logic 322), e.g., as an integer format, which would get
stored in the Conformed User Data Set 206 for that attribute.
[0067] Similarly, the user attribute “Device ID” may have
two different sources (Registration Server 68 and Fans
Server 70) with data values having two different formats,
e.g., binary and string. The Conforming Logic 202 will
reconcile this using the Conform Mapping Schema 210
(shown as Device ID Logic 317), e.g., as a string format,
which would get stored in the Conformed User Data Set 206
for that attribute.

[0068] In some cases, the attribute may have only one data
source, such as that shown for “Content Act” (or Content
Activity), which indicates whether the user clicked on any
content (e.g., an article, audio, video, or other content link),
which is saved in the Clickstream server. In that case, there
may be a Parent Attribute and Child Attributes associated
with this item, as well as logic to determine information
about certain parameters (e.g., Click Path of user), and the
Content Logic 318, will identify the needed information
from the Clickstream Server 72 (as indicated in the Conform
Mapping Schema) and provide the conformed data and type
to the Conformed User Data Set 206. A similar situation may
exist for the Ads Act (Advertisement Activity monitor)

US 2021/0133203 Al

attribute (and child attributes) on the Ads Server 66. Other
logic 321 may exist for the other attributes and child
attributes as needed.

[0069] Referring to FIG. 4, a sample Conform Mapping
Schema table 400 is shown, including the desired Attributes
302, Child or Sub-Attributes 304, and conformed attribute
data types 306 (for Attributes and Sub-Attributes). In par-
ticular, the table 400 shows Top-Level (or Parent) Attributes
having no Sub-Attributes, e.g., user id, is_registered, gender,
age, plays_fantasy, latitude, and longitude; and shows Sec-
ond-Level (or Child or Sub) Attributes indicated as an
“array” type, e.g., stated_teams_favorites, states_sports_
favorites, device_id, location, content activity, ads_activity.
Also included in the Conform Mapping Schema Table 400,
for illustrative purposes, is a brief sample Attribute Descrip-
tion 402 of some of the attributes and sub-attributes, and
Example Values 406 showing sample values for some of the
attributes. These fields 402,410 may not be in the actual
Conform Mappin Schema, but are shown here for illustra-
tive purposes.

[0070] Referring to FIG. 5, a more detailed sample of the
resulting Conformed User Data Set 220 is shown for Users1-
N, including the desired top-level conformed Attributes 502
(mapped from the Attributes 302 of the Conform Mapping
Schema in FIG. 4), desired Child or Sub-Attributes 504
(mapped from the Sub-Attributes 304 of the Conform Map-
ping Schema in FIG. 4), conformed attribute data types 506
for Attributes and Sub-Attributes (mapped from the Sub-
Attributes 306 of the Conform Mapping Schema in FIG. 4),
and user data Values 510. In particular, the Conformed User
Data Set 220 in FIG. 5 shows Top-Level (or Parent) Attri-
butes 502 and Second-Level (or Child or Sub) Attributes
504, a single column for data Type 506, e.g., string, integer,
Boolean, float, and the like; and the user data Values 510.
The Conformed User Data Set 202 may be a “flattened” data
structure (e.g., a text file) consisting of a textual represen-
tation of user data which can be easily retrieved, reviewed
and parsed by the Analyzer Logic 208 and Loader Logic 212
as needed. Any other data format for the Conformed User
Data Set 202 may be used if desired.

[0071] Referring to FIG. 6, a flow diagram 600 illustrates
one embodiment of a process or logic for creating the
conformed user data set 206 (FIG. 2), which may be
implemented using the Conforming Logic 202 (FIGS. 2 and
3). The logic 600 begins at a block 602, which receives the
Data Sources 11 and the Conform Mapping Schema 204.
Next, a block 604 receives the UserID sources, source fields
to retrieve the UserID from, and Logic (as needed), from the
Conform Schema and retrieve UserID values from the
corresponding data Sources/Fields. Next, a block 606 rec-
onciles the UserID values to a common format as indicated
in the Conform Schema. Next, a block 608 saves the
conformed UserID value in the Conformed User Data Set
206. This sets up the User ID for this user.

[0072] Next, a block 610 receives, for a given Attribute,
the Attribute Sources, source Fields to retrieve the Attribute
from, and Logic (as needed), from the Conform Schema 204
and retrieves Attribute values from the corresponding data
Source(s)/Field(s). Then, a block 612 determines if there are
multiple different data formats or logic to perform. If so, a
block 614 reconciles the values to a common format and
performs logic (as needed) per the Conformed Mapping
Schema for that attribute. After block 614, or if the result of

May 6, 2021

block 612 was NO, a block 616 saves the Attribute value in
the Conformed User Data Set for the current UserID.
[0073] Next a block 618 determines if all the Attributes
have been reviewed for a value. If not, a block 620 goes to
the next Attribute in the list for this UserID and repeats the
blocks 610-616 for the next Attribute until all the Attributes
for a given UserID is completed. If the result of block 618
is Yes, all Attributes for this UserID have been updated with
a value (if available), and a block 622 determines if all the
UserIDs have been reviewed. If not, a block 624 goes to the
next UserID and the logic returns to block 604 to obtain the
next UserID. If the result of block 622 is Yes, all UserIDs
have been reviewed for all of their respective attributes (if
available), and the logic exits.

[0074] Referring to FIG. 7, a flow diagram 700 illustrates
one embodiment of a process or logic for creating or
updating (when needed) the Bitmap Mapping Schema file
210 (FIG. 2), which may be implemented using the Analyzer
Logic 208 (FIGS. 2 and 3). As discussed with the Bitmap
Creation Logic of FIG. 2A, the Analyzer Logic 208 may be
performed after performing the Conforming Logic 202, e.g.,
initially and when the Conform Mapping Schema changes
the structure of the Conformed User Data Set.

[0075] The Analyzer Logic 208 receives (or ingests) text
or binary (or other format) data files as input data and
outputs the Bitmap Mapping Schema 210. For each user in
the input user data set, e.g., the Conformed User Data Set
206, the Analyzer Logic 208 determines what type of data is
in each attribute/field. In cases where the data “Type” is not
provided in the conformed data set 206, the Analyzer Logic
208 determines if the data type is Boolean, Integer, Floating
Point, Date, or String (independent of the data format
received). For numbers (integers, floating point, etc.), the
determines the minimum and maximum values and number
of values. For Strings, the Analyzer Logic keeps track of the
length (cardinality) of Strings, the number of entries and
number of different values/strings, and then generates the
mapping strategy to map the user data into the bitmap
format. For “date” fields, the Analyzer Logic keeps track of
the number of occurrences. In general, “dates” may appear
in multiple formats from various different data sources. For
Roaring, the Analyzer Logic 208 converts all “dates” into 2
integers, independent of the format of the originally ingested
“date” data. Such data analysis is described further with the
below logic.

[0076] In particular, the logic 700 begins at a block 702,
which receives the Conformed User Data Set 206. Next, a
block 704 receives the value and data type for the current
UserID and current Attribute, from the Conformed User
Data Set 206.

[0077] Next, a block 706 determines and updates the
statistics for the current Attribute based on the attribute
value for this UserID and saves the result in the on the
Schema Server, which may be performed by Analyzer—
Data Statistics Logic 800 shown in FIG. 8 (discussed
hereinafter). Next, a block 708 determines if all the UserIDs
for this attribute have been reviewed. If not, block 710 goes
to the next UserID and the logic returns to block 704 to
obtain the value and data type. If the result of block 708 is
Yes, all UserIDs have been reviewed for the current attri-
bute, and block 712 determines if all the attributes have been
reviewed. If not, a block 714 goes to the next Attribute and
the logic returns to block 704 to repeat steps 704-708 until
all the Attributes for a given UserID is reviewed. If the result

US 2021/0133203 Al

of block 712 is Yes, all Attributes for all the UserIDs have
been reviewed and block 716 determines a Mapping Strat-
egy for current Attribute (Field) based on Attribute value
statistics which may be performed by Analyzer—Mapping
Strategy Logic 1000 shown in FIG. 10 (discussed hereinaf-
ter).

[0078] Next, once a mapping strategy has been determined
for the Attribute, a block 718 saves the resulting “Field”
name (corresponding to the source Attribute name) and
corresponding Mapping Strategy and associated Metadata in
the Bitmap Mapping Schema file for the current Attribute
being reviewed. Next, block 720 determines if all the source
Attributes have been mapped. If not, block 722 goes to the
next Attribute and the logic returns to block 716 to repeat
steps 716-718 until a Field and Mapping Strategy and other
Metadata are assigned/determined for all the source Attri-
butes. If the result of block 720 is Yes, a Field and Mapping
Strategy and Metadata have been assigned/determined for
all the source Attributes, and the Bitmap Mapping Schema
210 creation/update is complete, and the logic exits.

[0079] The resulting Bitmap Mapping Schema (and map-
ping strategies therein) created/updated by the Analyzer
Logic 208 may be reviewed or edited/modified by the Client
(e.g., a marketing person or other client) by editing the
Bitmap Mapping Schema file (also referred to herein as the
“config.” file) or the Conform Mapping Schema file, to
identify or correct erroneous or incorrect mapping, or to
input updates in attributes or attribute values, e.g., using the
Query UI App 86, as discussed more with FIG. 15.

[0080] In some embodiments, as discussed herein with the
Bitmap Creation Logic 75 in FIG. 2A, correction/update
logic (blocks 262,264) may be used to identify erroneous or
incorrect mapping, or updates in attributes or attribute
values and automatically correct the Bitmap Mapping
Schema file or the Conform Mapping Schema file, using
e.g., machine learning or artificial intelligence as discussed
herein.

[0081] Referring to FIG. 8, a flow diagram 800 illustrates
one embodiment of a process or logic for implementing
block 706 of the Analyzer Logic 208 for determining and
updating statistics for source attributes values, which may be
implemented using the Analyzer—Data Statistics Logic 800.
The logic 800 begins at a block 802, which determines if the
value of the attribute is true or false (or yes/no). If so, a block
804 marks the attribute as Boolean and the logic exits. [f not,
a block 806 determines if the value can be parsed as an
integer. This may be done by calling a known parsing
function or tool or routine in a routine library, such as “GO
LANG” or “LANG”, with the desired data and data type to
attempt to parse, e.g., integer, float, or others, and which
returns two values. If the parsing function was able to parse
the value in the desired data type, e.g., integer, it returns the
integer number and a true flag. If the parsing function was
not able to parse the value in the desired data type, e.g.,
integer, it returns a O (or Nill) value and a false flag.

[0082] If it parses as an integer, block 808 checks if it is
a min or max value so far, and if so, the min/max values are
updated/saved in the metadata. Also, an integer counter is
incremented in block 808. After performing block 808, or if
the result of block 806 is NO, block 810 determines if the
value can be parsed as a floating point number (a number
with numbers on both sides of the decimal point). If so,
block 812 checks ifit is a min or max value so far, and if so,

May 6, 2021

the min/max values are updated/saved in the metadata. Also,
a float counter is incremented in block 812, and then the
logic exits.

[0083] If the result of block 810 is NO, a block 814
determines if the value parses as a date. This may be done
by calling a known specialized library state machine pattern-
matching open source utility tool, such as “PARSE DATE”,
with the desired date data to attempt to parse as a Date, and
which returns two values. If the parsing function was able to
parse as a date, the utility returns a date format descriptor
(e.g., data or date/time, based on language used), and a
Y-true value or flag. If the parsing function was not able to
parse the value in the desired data type, e.g., integer, it
returns a 0 (or Nill) value and a false value or flag. If the
result of block 810 is Yes (parsable as a date), block 816
increments a Date counter, and the logic exits.

[0084] If the result of block 814 is NO, a block 818
determines if the value parsed as an integer in block 806. If
s0, the logic exits as the value has already been identified as
an integer. If the result of block 818 is NO, the value did not
a Boolean value and did not parse as an integer or a floating
point number, and, thus, the value is handled as a “string”
type.

[0085] Next, block 820 determines if the string enumera-
tion value for this string has been seen before. Block 820
may also calculate the string enumeration value for this
string. If so, block 822 increments a value counter for that
value and the logic 800 exits. If the result of block 820 is No,
this is the first time seeing this string and block 824 adds the
string to a string enumeration table and increments a map
size counter for the attribute. Next, block 826 determines if
map size value counter is greater than a predetermine high
cardinality threshold, e.g., max. 500 values. If so, the
attribute is marked as high cardinality string at block 828
and the logic 800 exits. If not, the logic 800 exists.

[0086] Referring to FIGS. 9A and 9B, an example of a
string enumeration map/table 900 and a data type counter
table 950 are shown, respectively. The string enumeration
map/table 900 shows three example sub-tables for team
name 902, browser 904, and video title 906. In the far left
column of each table shows the tally of how many different
values (or strings) there were (which may in some embodi-
ments be the string enumeration value), the center column
shows the string value and the right column shows the
number of users that selected that string value. In some
embodiments, the tables 902-906 may include a separate
string enumeration column which may be a unique value or
code assigned to each string value. For example, for team
name, there may be a table or map that provide or assigns a
unique code for each sports team, e.g., Bears=32;
Wolves=10; Hawks=55; Lions=20; Tigers=130; and the
like, for all sports teams in all sports. In that case, the value
column may be replaced by the team code, or both columns
may exist.

[0087] For the Team Name table 902, there were a total of
105 different string values (team names) selected by all the
users, which is less than the High Cardinality (HC) Thresh-
old of e.g., 500 values; thus, this string is not mapped as high
cardinality (not HC), and can be mapped as a standard String
Enumeration value. Similarly, for the Browser table 904,
there were a total of 10 different string values (browser
names), which is less than the High Cardinality (HC)
Threshold of, e.g., 500 values; thus, this string is not mapped
as high cardinality (not HC), and can be mapped as a

US 2021/0133203 Al

standard String Enumeration value. However, for the Video
Title table 906, there were a total of 2,000 different string
values (video titles), which is greater than the High Cardi-
nality (HC) Threshold of e.g., 500 values; thus, this string is
mapped as High Cardinality String (HC String), and can be
mapped using a known “hashing” algorithm or tool, such as
Murmur32 (for 32 bit), which provides a unique integer
value for each title (also referred to herein as StringHash
mapping).

[0088] Referring to FIG. 9B, the data type counter table
950 shows an example of the type counter that is used to
tally how many of each data type (non-Boolean) occurring
in analyzing the user data which may be used by the
Analyzer Logic to determine the mapping strategy for the
conformed data set. The far left column the table 950 shows
the attribute name (e.g., Team Name, Browser, Device 1D,
Title, etc.) and the next four columns show the total tally (or
total count) of how many times that attribute was identified
as an Integer, Floating point number, Date, and String,
respectively. These values may be used to determine the
mapping strategy as discussed herein.

[0089] In some embodiments, the Data Statistics Logic
800 may use the “Type” field provided in the Conform
Mapping Schema to determine certain statistics about the
data, e.g., Boolean, floating point, integer, and the like. In
that case, the logic 800 may be simplified (e.g., by not
needing to parse the data values to determine data type), and
may use the information in the Type field to make this
determination.

[0090] Referring to FIG. 10, a flow diagram 1000 illus-
trates one embodiment of a process or logic for implement-
ing block 716 of the Analyzer Logic (FIG. 7) for determin-
ing and updating the mapping strategy for attributes, which
may be implemented using the Analyzer—Mapping Strat-
egy Logic 1000. The logic 1000 begins at a block 1002,
which determines if the attribute data type is has been
marked as Boolean. If so, block 1004 maps the attribute as
Boolean (BoolDirect) having a Standard (Std) Bitmap data
format and the logic proceeds to block 1026 where the Field
and Mapping Strategy are saved in the Bitmap Mapping
Schema file and the logic exits. If the result of block 1002
is NO, block 1006 determines if the Date Counter is greater
than the Integer Counter and if the Date Counter is greater
than 99% of the total value count for that attribute. Other
threshold values for the Date Counter may be used if
desired. If Yes, block 1008 maps the attribute as DateTime
having a Bit-Sliced Index (BSI) Bitmap data format
(DateBSI) and the logic proceeds to block 1026 where the
Field and Mapping Strategy are saved in the Bitmap Map-
ping Schema file. BSI data format is discussed in more detail
hereinafter.

[0091] If the result of block 1006 is NO, block 1010
determines if the Float Counter is greater than one (1), i.e.,
a single occurrence of floating point may be sufficient to set
it as Float. Other threshold values for the Float Counter may
be used if desired, such as 2 to 100 to allow for data entry
errors or ID codes having decimal points, or X% of the
values may be used (similar to that used for the integer or
date counters). If Yes, block 1012 maps the attribute as Float
having a Bit-Sliced Index (BSI) Bitmap data format (IntBSI)
and the logic proceeds to block 1026 where the Field and
Mapping Strategy are saved in the Bitmap Mapping Schema
file and the logic exits. If the result of block 1010 is NO,
block 1014 determines if the Integer Counter is greater than

May 6, 2021

99% of the total value count for that attribute. Other thresh-
old values for the Integer Counter may be used if desired. If
Yes, block 1016 maps the attribute as Integer and the logic
proceeds to block 1026 where the Field and Mapping
Strategy with the corresponding Bitmap data format (Std
Bitmap or BSI) are saved in the Bitmap Mapping Schema
file and the logic exits.

[0092] If the result of block 1014 is NO, the attribute is
being handled as a “String” and block 1018 determines if it
is a High Cardinality String. If Yes, block 1020 maps the
attribute as Hashed String having a Bit-Sliced Index (BSI)
Bitmap data format (StringHashBSI) and the logic proceeds
to block 1026 where the Field and Mapping Strategy with
the corresponding Bitmap data format (Std Bitmap or BSI)
are saved in the Bitmap Mapping Schema file and the logic
exits. If the result of block 1018 is NO, the attribute is not
a High Cardinality String and, thus, can be handled as an
enumerated string and block 1022 maps the attribute as an
Enumerated String having a Standard (Std) Bitmap data
format (StringEnum). Next, block 1024 obtains the enumer-
ated string (from a predetermined string/code mapping table,
not shown) and saves the Enumerated String Value in the
Bitmap Mapping Schema file. Next block 1026 saves the
Field and Mapping Strategy for the StringEnum with the
corresponding Bitmap data format (Std Bitmap or BSI) in
the Bitmap Mapping Schema file and the logic exits.

[0093] Accordingly, as shown above, in some embodi-
ments, the Analyzer Logic chooses a mapping strategy for a
given Field and also determines if the Field will be mapped
as a Std Bitmap or BSI data format. For convention, the
present disclosure appends a “BSI” to the strategy label (see
FIG. 11) to indicate it is being mapped as a BSI format, such
as StringHashBSI, IntBSI, DateBSI, SysMilliBSI and the
like. In particular, dates and timestamps are mapped as BSI
to allow for range searches to be performed on the data, such
as the mapping strategy for “millisecond granularity” time-
stamps as BSI or SysMilliBSI. Strings that are enumerated
(each string associated with a unique value), are mapped as
Standard (or Std) Bitmap, e.g., StringEnum. Integers may be
mapped as either Std Bitmap (IntDirect) or BSI (IntBSI). In
FIG. 11 column 1108, the Fields Age and registered_DMA _
id are mapped as Std Bitmap (IntDirect) (also shown in FIG.
12 for Age, rows 1246, 1248, 1250), whereas the Fields:
Device_ID, St_Tm_Fav_TeamID, St Tm_Fav_SportID,
ContAct-Video_Duration are mapped as BSI (IntBSI). How-
ever, in some embodiments, age may be mapped as a BSI.
Also, story title (ContAct-Story_Title), and video title (Con-
tAct-Video_Title) may be hashed to strings and stored as
integers or codes with discrete values (StringEnum) or
stored as BSI (StringHashBSI) instead. If integers are
mapped both ways in the user data set (for different fields),
the Analyzer Logic, e.g., at the Block 1016 in the process
1000 (FIG. 10), may set the appropriate integer mapping,
e.g., IntDirect or IntBSI, based on the Field.

[0094] Referring to FIG. 11, a sample of the Bitmap
Mapping Schema 210 is shown, which shows in columns
from left to right as: Source Attribute Name 1102, Source
Type 1104, Field Name 1106, Mapping Strategy 1108,
Fraction Length 1110 (max. # of places to right of decimal
point), Min. Value 1112, Max. Value 1114, Max. Character
Length 1116, Values 1118 (associated with Rows in the
Field), RowlDs 1120 (which Rows are used in the Field).

US 2021/0133203 Al

The number of rows used for a given Field in the bitmap will
depend on the mapping strategy and associated metadata (as
discussed herein).

[0095] There are two “Source” columns 1102,1104 pro-
vided from the Conformed User Data Set 206 (FIG. 5). The
Source Attributes column 1102 is derived from the Parent
and Child Attribute columns 502,504 in the Conformed Data
Set 206, which are combined or collapsed into the Source
Attribute column 1102, and the Source Type 1104, which is
provided (if available) in the Conformed User Data Set 206.
The remaining columns 1106-1120 in the Bitmap Mapping
Schema 210 are populated by the Analyzer Logic 208 after
it analyzes the Conformed User Data Set for each of the
users (or UserIDs) and characterizes the data for loading (or
writing) into bitmap format, and may be referred to herein
generally as “statistics” or “metadata”, which describes the
data stored in the Conformed User Data Set 206.

[0096] The data in the Bitmap Mapping Schema 210 may
be used by the Loader Logic 212 to call the Bitmap Loading
Tool 214 to load the user data set into the Bitmap Index 220.
For example, the Field Name 1106, and the Row 1D (which
row in the field) and Column ID (which UserID) may be
used to tell the Bitmap Loading/Query Tool 214 what
locations in the Bitmap Index file 220 to populate with 0’s
and 1’s to create the bitmap representation of the Conformed
User Data Set 206. Also, certain of the columns 1108-1120
to the right of the Field Name may be referred to herein as
“Metadata” or “Detailed Metadata”, which may be used by
the Loader Logic 212 to create the call format needed by the
Bitmap Loading/Query Tool 214 to load the Bitmap Index
file 220.

[0097] For example, the “UserID” Field (or Attribute),
from the Field column 1106 has a StringHashBSI mapping
strategy 1108, the values for the Field having a Max. Value
of “4,294,967,295”, with a Max. Character length of 69
characters. The RowlDs 1120 and Values 1118 for each
RowID are not shown as this will be mapped as an integer
from a “hashing” algorithm that assigns a unique integer
value for a string that has many possible values (e.g., more
than 500), and that value may be used in the call to the
Bitmap Loader/Query Tool 214.

[0098] As another example, the “Gender” Field (or Attri-
bute) 1106 has a StringEnum mapping strategy 1108, the
values for the Field having a Max. Character Length 1116 of
“1” character, with specific Values of M, F, U (male, female,
and unknown) (from the Values col. 1118), which will use or
occupy three rows, Rowl, Row2, Row3, in the “Gender”
Field in the Bitmap (from the RowlDs column 1120). The
other rows shown in FIG. 11 of the Bitmap Mapping Schema
210 may have similar or related functions and correspon-
dence to the Bitmap, as described further herein.

[0099] Referring to FIG. 12, an illustration is shown of
how the Loader Logic 212 creates the output Bitmap Index
table 220 having values from the Conformed User Data Set
210 in bitmap format for each user (Userl to UserN), using
the Bitmap Mapping Schema 210. In particular, the Loader
Logic 212 receives (or retrieves) each Source Attribute 1102
and the output data structure for the bitmap (Field 116,
Mapping Strategy 1108, and Metadata 1122) for the Attri-
bute/Child-Attribute (or Sub-Attribute) from the Bitmap
Mapping Schema 210, as indicated by lines 1220. The
Loader Logic retrieves the user data values for each source
Attribute from the Conformed User Data Set 206, as shown
by the lines 1222 and uses the Bitmap Mapping Schema to

May 6, 2021

create and send a command or call 1260 (or Application
Programming Interface (API) call or command), e.g., “Set
Bit” or “Set Value”, to the

[0100] Bitmap Loading/ Query Tool 214 to load the bit-
map 220. Other API call formats may be used if desired,
depending on the type of Bitmap Loading/ Query Tool 214
used to load (or set the 1’s and 0’s in) the bitmap.

[0101] When finished, the Loader Logic 212 sends the
appropriate commands to cause the Bitmap Loading/Query
tool 214 to load the data values from the Conformed User
Data Set 206 into the Bitmap Index table 220.

[0102] For example, the “UserID1” attribute for Userl
value 1204 is read by the Loader Logic 212 and uses it to
populate the Column ID portion of an API call (or com-
mand) to the Bitmap Loading/Query Tool 214, which would
be the Column corresponding to UserID1 in the Bitmap
Index Table 220.

[0103] Similarly, the “Gender” Attribute 1212 is read by
the Loader Logic 212, which uses it to create the Field, Row
1D, and Value portions (as appropriate) of the API call to the
Bitmap Loading/Query Tool 214 based on the Field Name
1106 (FIG. 11), the other Metadata 1122 (FIG. 11) in the
Bitmap Mapping Schema 210. In this case, the “Gender”
Attribute 1212, 1232, 1242, for Userl, User2, User3, respec-
tively, are mapped as a string enumeration (StringEnum)
having three values (M, F, U), each value corresponding to
a row in the Bitmap (Rowl, Row2, Row3), as shown by
regions 1206, 1208, 1210 in the Bitmap Index File Table 220
(or Bitmap) for Userl, User2, UserN, respectively.

[0104] In particular, for the example shown in FIG. 12, for
User 1 (corresponding to Col. 1), the actual user data value
for Gender is “M”, which is shown by the region 1206 in the
Bitmap 220 in Column 1 (for UserID1) as having a bit value
of “1” in Row1 corresponding to “M”, and bit values of “0”
for Row2 and Row3, corresponding to data values of F and
U, respectively. Similarly, for User2, corresponding to
UserID# 1234, the actual user data value for Gender is “F”,
which is shown by the region 1208 in the Bitmap 220 in
Column 2 (for UserID2) as having a bit value of “1”” in Row2
corresponding to “F”, and bit values of “0” for Row1 and
Row3, corresponding to user data values of M and U,
respectively. Lastly, for UserN, corresponding to UserID#
1244, the actual user data value for Gender is “M”, which is
shown by the region 1208 in the Bitmap 220 in Column 2
(for UserID2) as having a bit value of “1” in Row1 corre-
sponding to “M”, and a bit value of “0” for Row2 and Row3,
corresponding to data values of F and U, respectively. A
similar technique is used for the Gender values for other
Users (Column IDs) in the Bitmap. Also, a similar technique
may be used for the other integer direct (StringEnum) Fields
in the Bitmap.

[0105] Similarly, the “Age” Attribute 1212 is read by the
Loader Logic 212, which uses it to create the Field, Row ID,
and Value portions (as appropriate) of the API call to the
Bitmap Loading/Query Tool 214 based on the Field Name
1106 (FIG. 11), the other Metadata 1122 (FIG. 11) in the
Bitmap Mapping Schema 210. In this case, the “Age”
Attribute 1213, 1233, 1243, for Userl, User2, User3, respec-
tively, are mapped as an integer (IntDirect) having values
from Agel to AgeM, each age value corresponding to a row
in the Bitmap (Row1 to RowM), as shown by regions 1246,
1248, 1250 in the Bitmap Index Table 220 (or Bitmap Index
User Data Set) for Userl, User2, UserN, respectively. In
addition to the specific values of age, the field may have

US 2021/0133203 Al

assigned a value, e.g., Unknown (value=199), for an
unknown age, used if the age data is not available or not
entered for that user or the age value does not make sense,
such as an age typo of, e.g., 250 years old.

[0106] In particular, for the example shown in FIG. 12, for
User 1, the actual user data value for Age is “22”, which is
shown in the Bitmap 220 as having a bit value of “1” in
Row2 corresponding to “22”, and a bit value of “0” for
Row1 and Row3, corresponding to data values of 19 and 31,
respectively. Similarly, for User2, the actual user data value
for Age is “31”, which is shown in the Bitmap 220 as having
a bit value of “1”” in Row3 corresponding to “31”, and a bit
value of “0” for Rowl and Row2, corresponding to data
values of 19 and 22, respectively. Lastly, for UserN, the
actual user data value for Age is “199”, which corresponds
to the unknown code, which is shown in the Bitmap 220 as
having a bit value of “1” in RowM corresponding to “199”,
and a bit value of “0” for Row1 to Row3 and all other rows
up to RowM, corresponding to data values other than 199.
A similar technique may be used for the other integer direct
(IntDirect) Fields in the Bitmap.

[0107] In some embodiments, as indicated above, the
Bitmap Index Table 220 (or file) may store numbers (e.g.,
integers) as a “BSI” (or Bit-Sliced Index) bitmap data
format. In that case, a set of integer values may be more
efficiently stored in the bitmap using a binary code across a
plurality of rows (in a given Field) instead of having a row
associated with each integer value. For example, if the range
of potential Ages is 1-127, this range of integers can be
mapped in binary code using only 7 bits (i.e., 0000000 to
1111111), and thus 7 rows, instead of using 127 rows,
thereby reducing the size of the bitmap by 120 rows. Using
a BSI Bitmap approach also allows the ability to efficiently
search a range of values, e.g., people between the ages of
20-25, which is useful when range queries are needed. The
BSI Bitmap approach can be used with any mapping strat-
egies that provide an integer-type value.

[0108] When using a BSI Bitmap, the API call 1260 from
the Loading Logic 212 to the Bitmap loading/query tool 214
would be a “Set Value” call, including: Field (e.g., “Age”),
Column ID (for UserID, e.g., UserID=1234), and Value (for
age value of the user, e.g., 33 yrs old). Thus, in that case, the
API call would be: Set Value (Age, 1234, 33). The Bitmap
Loading/Query Tool 214 selects the appropriate number of
Bitmap rows (or bits) for the Field to accommodate the size
range for that Field in the Bitmap Index Table 220. In some
embodiments, the API call may include an indication that
BSI is the desired Bitmap storage format to be used for this
Field or data value.

[0109] Referring to FIG. 13, a flow diagram 1300 illus-
trates one embodiment of a process or logic for implement-
ing the Loader Logic 212 (FIGS. 2 and 12), of block 260
(FIG. 2A) of the Bitmap Creation Logic 75 (FIGS. 1 and 2),
which loads the latest update of the Conformed User Data
Set 206 (having the most recent user data values) into the
Bitmap Index User Data Set 220 (or Bitmap Index Table) for
each UserID, using the Bitmap Mapping Schema 210. The
logic 1300 begins at a block 1304, which receives the Field,
Mapping Strategy and other metadata in the Bitmap Map-
ping Schema 210. Next, block 1306 retrieves the type of
bitmap data format from the mapping strategy, e.g., Standard
(Std) Bitmap (or X,Y integer representation) or Bit-Sliced
Index (BSI) bitmap for the current field. Next, block 1308
checks if the data format is Std Bitmap. If so, block 1310 sets

May 6, 2021

the API call to “Set Bit (Field, Row ID, Col. ID)”, where
Field is the field for where the data bit located at the Row ID
(indicating data value in the Field) and Col ID (indicating
the UserID) is to be set to one (1).

[0110] Next, or if the result of block 1308 is NO, block
1312 checks if the data format is a Bit-Sliced Index (BSI)
format. If so, block 1314 sets the API call to “Set Value
(Field, Col. ID, Value)”, where Field is the field having a
collection of Rows for which data bits will be set as a binary
code indicative of the Value, Col ID (indicating the UserID)
and Value is the actual value of the data for Field being
written.

[0111] Next, or if the result of block 1312 is NO, block
1320 performs the API call (or sends the command) to the
Bitmap Loading tool 214 (e.g., Pilosa) with the appropriate
command format to load the value(s) of the data into the
Bitmap for the current Field. In some embodiments, the
block 1320 may include timestamp information relating to
the data stored, provided it is supported by the Bitmap
Loading Tool. For example, all “Standard bitmaps” may
have an added third dimension of time, referred to herein as
time “slice”. Thus, for the data fields not mapped as BSI, the
data may be stored using the time dimension. In that case,
for each daily load of user data stored by the Loader Logic
in the bitmap, the block 1320 may also indicate which time
“slice” is associated with the user data being loading it the
bitmap. The granularity of the time “slice” is based on the
Loading Tool, e.g., weekly, daily, hourly, minute, second,
millisecond, or the like. In some embodiments, the logic
updates once per day (daily), in which case, the time “slice”
data would use daily granularity (if supported by the Load-
ing Tool). In some embodiments, the Loading Tool may not
support time slicing for BSI bitmap fields. In that case, for
BSI bitmap fields, the last data set loaded is the most current.
[0112] As discussed herein, some embodiments of the
present disclosure may use “Roaring” bitmap for the bitmap
structure, although Roaring is just one possible implemen-
tation that may be used by the Bitmap Loading/Query Tool
214. Roaring is a software platform that enables the creation
of bitmaps or bitmap index data sets. In some embodiments,
Pilosa software (an open source implementation of Roaring)
may be used for the Bitmap Loading/Query Tool 214;
however, other implementations of Roaring may also be
used within the present disclosure. Pilosa may be viewed as
atool to write to (or load) the bitmap data set, and its detailed
operations are not critical to understanding the present
disclosure. In practice, there may be software “wrappers”
built around a Pilosa stack which the Loader Logic may just
use with the appropriate call functions or APIs, e.g., “Set
Bit”, “Set Value”, and the like. More information about
Pilosa and Roaring bitmaps may be found at the websites:
https://www.pilosa.com/docs and http://roaringbitmap.org,
respectively, which are incorporated herein by reference to
the extent needed to understand the present disclosure. In
some versions of Pilosa, the term “Fields” may also be
referred to as “Frames”.

[0113] Next, block 1322 determines if all the Fields have
been written. If not, block 1326 goes to the next Field and
the logic returns to block 1304 to receive data associated
with the next Field for the current UserID. If the result of
block 1322 is Yes, all Fields have been written for this
UserlID, and block 1324 determines if all UserIDs have been
written. If not, block 1328 goes to the next UserID and the
logic returns to block 1304 to receive data associated with

US 2021/0133203 Al

the next UserID (for all the Fields). If the result of block
1324 is Yes, all UserIDs have been written for all of their
respective Fields, the loading of the Bitmap Index User Data
Set 220 is complete, and the logic 1300 exits.

[0114] Referring to FIGS. 14A and 14B, example of at
least a portion of a resulting Bitmap Index Table 220 is
shown as may be created by the system and method of the
present disclosure. In particular, in FIG. 14A, Fields such as
Gender, Age, Browser, Plays_Fantasy, Location_State,
Location_City, Other Location Fields/Attributes, St_Tm_
Fav_Name, and St_Tm_Fav_Sport are shown, together with
the Mapped Format for each Field (from the Mapping
Strategy in the Bitmap Mapping Schema 210). Also, in FIG.
14B, Fields such as ContAct-Source, ContAct-VideoTitle,
CotAct-Device, Other ContAct Fields/ Attributes AdsAct-
Source, AdAct-AdvName, AdsActs-Device, and Other Ads-
Acts Fields/Attributes are shown, together with the Mapped
Format for each Field (from the Mapping Strategy in the
Bitmap Mapping Schema 210). Where the first two fields in
FIG. 14A (Gender and Age) are the same as that shown in
FIG. 12, and some of the other Fields shown in FIGS. 14A
and 14B are a selection of those shown in FIG. 11 (Bitmap
Mapping Schema). Also, FIGS. 14A and 14B shows sample
data bits set to 1 and 0 for several users (UserlID, User2ID,
User3ID . . . UserNID).

[0115] Referring to FIGS. 15, 16 and 17, a flow diagram
1500 (FIG. 15) illustrates one embodiment of a process or
logic for implementing the Query Ul App Logic (FIGS. 1
and 2), which may reside on the Client Device or Computer
84 (FIG. 1) and which, when launched (e.g., by the Client
88), receives inputs from the Client 88, the Bitmap Mapping
Schema 210, the Bitmap Index User Data Set 220 and
displays (or sends or provides) a Bitmap Query User Inter-
face (UI) including search fields (or components or attri-
butes), search conditions and tools, and provides Bitmap
query results. The Logic begins at block 1502, which
displays a main user interface (UI) landing page 1600 (FIG.
16).

[0116] Referring to FIG. 16, the landing page 1600 screen
illustration includes a Custom Audience Management Plat-
form overview screen, which shows a listing 1602 of queries
(or searches or segments) that have been previously
searched and saved in the Query Ul App 86 or on the Device
84 (or other device or server). For each segment/query in the
list 1602, the screen illustration (or screen shot) 1600 shows
when the query was created 1604, query name 1606, query
“reach” 1608 (i.e., size of audience), schedule for re-running
query 1610, and when the query schedule (if any) expires
1612. In addition, the screen shot 1600 provides a series of
selectable actions (or tools) icons 1614 associated with (or
to perform an action on) each segment or query in the list
1602. In particular, from left to right, the icons 1614 include
edit segment 1614A, copy (segment definitions) 1614B,
set-up schedule for query to run 1614C, run query now
1614D, delete query 1614E, history when query was last run
1614E. Also, there is a selectable “Create Audience” button
1620, which allows the client to create a new query or
segment (or an audience query).

[0117] Referring to FIG. 15, next, block 1504 determines
if a segment item on the listing 1602 has been clicked on (or
selected). If so, block 1508 displays the details of the query
segment item selected on a separate pop-up screen (not
shown). If the result of block 1504 is NO, block 1506
determines if one of the action icons 1614 has been selected.

May 6, 2021

If so, block 1507 displays a Ul screen for the requested
action and allows the Client to perform the indicated action.
If the result of block 1506 is NO, block 1510 determines if
the “Create Audience” button 1620 has been selected. If not,
the logic exits. If the result of block 1510 is YES, block 1512
displays an Audience Creation screen (FIG. 17) having
selectable attributes and fields as determined by the Bitmap
data and the Bitmap Mapping Schema.

[0118] Referring to FIG. 17, the landing page 1700 screen
illustration for Create Audience 1702 is shown, which shows
the creation of a query 1720 (“Female fans of Golden State
Warriors over 25 yrs old”), having an Audience Description
1704 of: Age>25 and Gender=Female and Team NBA:
Stated=Golden State Warriors. The three search components
(or attributes or fields) 1704A, 1704B, 1704C, of the query
1704 are also shown on the screen 1700 as well as the search
conditions (“and”) 1706, 1708 between each search com-
ponent. The screen also provides action icons to edit 1730
and to delete 1732 for each of the search components, and
a “+” icons 1734 to add further filters to each of the search
components or a “+” icon 1736 to add additional search
components. The resulting query can also be saved for future
reference and added onto the master list 1602 (FIG. 16) by
selecting the “Save” button 1740 in the lower right of the
screen. The saved queries may be retrieved later to add new
search components or conditions, or modify or delete exist-
ing components or conditions.

[0119] In the example of FIG. 17, the Audience Reach
1710 for the query is 184,857 people, and the Audience
Reach Breakdown 1712 is shown for each of the search
components, as follows: for Age>25, audience reach 1714 is
44,017,091, for Gender=Female, the audience reach 1716 is
6,178,943, and for Team NBA: State=Golden State War-
riors, the audience reach 1718 is 6,324,536.

[0120] Referring again to FIG. 15, after block 1512 dis-
plays the Create Audience screen 1700, block 1514 receives
the Audience Creation attributes/fields and conditions from
the Client (as shown in FIG. 17). Next, block 1516 performs
the Bitmap query with the selected fields and conditions.
Next, the logic at block 1518 displays the results of the query
including: Audience Description 1704, Audience Reach
1710, and Audience Breakdown 1712.

[0121] Next, a block 1520 determines if an “Edit Schema™
Selection has been received. If so, block 1522 displays a
landing page on a separate pop-up screen (not shown) which
allows the Client to edit/remove/add attributes/fields or
associated values of the selected the Conform Mapping
Schema and the Bitmap Mapping Schema, and to save the
results, and then the logic exits.

[0122] Accordingly, the Ul provides conditions to present
to the Client 88 for creating the query attributes/fields and
conditions and possible values. The Bitmap Mapping
Schema 210 (or Config. File) together with the Bitmap
Loading/Query Tool 214 (e.g., Pilosa) may be used both to
load the data into the Bitmap and to create the user interface
(UD. In some embodiments, the Ul or App 86 may be
implemented as a wizard-type interface if desired.

[0123] In some embodiments, the data sources may have
a direct (or indirect) link to the bitmap creation logic. Also,
in some embodiments, all the data sources may be normal-
ized or conformed to the conform mapping schema before
being fed to the bitmap server logic. Further, the conform
schema may be used as the source for the bitmap creation
logic.

US 2021/0133203 Al

[0124] The present disclosure includes systems for
improving the speed of obtaining query results from a
massive, disparate data set by converting data to bitmap as
recited herein, querying the bitmap dataset, returning a
result, wherein massive means larger than 1 million (or 10
million or 100 million) number of records (or users or items)
each user or item having a plurality of attributes (e.g., 2, 10,
100, 1000, 10,000, 100,000 attributes) and disparate means
from at least 3 (e.g., 3, 5, 10, 100, 1,000) different sources
in at least 3 (e.g., 3, 5, 10, 100, 1,000) different data formats
or types.

[0125] The system, computers, servers, devices and the
like described herein have the necessary electronics, com-
puter processing power, interfaces, memory, hardware, soft-
ware, firmware, logic/state machines, databases, micropro-
cessors, communication links, displays or other visual or
audio user interfaces, printing devices, and any other input/
output interfaces, to provide the functions or achieve the
results described herein. Except as otherwise explicitly or
implicitly indicated herein, process or method steps
described herein may be implemented within software mod-
ules (or computer programs) executed on one or more
general purpose computers. Specially designed hardware
may alternatively be used to perform certain operations.
Accordingly, any of the methods described herein may be
performed by hardware, software, or any combination of
these approaches. In addition, a computer-readable storage
medium may store thereon instructions that when executed
by a machine (such as a computer) result in performance
according to any of the embodiments described herein.
[0126] In addition, computers or computer-based devices
described herein may include any number of computing
devices capable of performing the functions described
herein, including but not limited to: tablets, laptop comput-
ers, desktop computers, smartphones, smart TVs, set-top
boxes, e-readers/players, and the like.

[0127] Although the disclosure has been described herein
using exemplary techniques, algorithms, or processes for
implementing the present disclosure, it should be understood
by those skilled in the art that other techniques, algorithms
and processes or other combinations and sequences of the
techniques, algorithms and processes described herein may
be used or performed that achieve the same function(s) and
result(s) described herein and which are included within the
scope of the present disclosure.

[0128] Any process descriptions, steps, or blocks in pro-
cess or logic flow diagrams provided herein indicate one
potential implementation, do not imply a fixed order, and
alternate implementations are included within the scope of
the preferred embodiments of the systems and methods
described herein in which functions or steps may be deleted
or performed out of order from that shown or discussed,
including substantially concurrently or in reverse order,
depending on the functionality involved, as would be under-
stood by those reasonably skilled in the art.

[0129] It should be understood that, unless otherwise
explicitly or implicitly indicated herein, any of the features,
characteristics, alternatives or modifications described
regarding a particular embodiment herein may also be
applied, used, or incorporated with any other embodiment
described herein. Also, the drawings herein are not drawn to
scale, unless indicated otherwise.

[0130] Conditional language, such as, among others,
“can,” “could,” “might,” or “may,” unless specifically stated

May 6, 2021

otherwise, or otherwise understood within the context as
used, is generally intended to convey that certain embodi-
ments could include, but do not require, certain features,
elements, or steps. Thus, such conditional language is not
generally intended to imply that features, elements, or steps
are in any way required for one or more embodiments or that
one or more embodiments necessarily include logic for
deciding, with or without user input or prompting, whether
these features, elements, or steps are included or are to be
performed in any particular embodiment.

[0131] Although the invention has been described and
illustrated with respect to exemplary embodiments thereof,
the foregoing and various other additions and omissions may
be made therein and thereto without departing from the spirit
and scope of the present disclosure.

What is claimed is:

1. A method for converting user data from a plurality of
users and from a plurality of disparate data sources to bitmap
data, comprising:

receiving the user data from the plurality of data sources,

the user data indicative of user attributes;

receiving a conform mapping schema;

creating a conformed user data set for the plurality users

using the conform mapping schema;

analyzing the conformed user data set to obtain statistics

about the user data for each user attribute;

creating a bitmap mapping schema based on the statistics

about the user data set; and

loading the conformed user data set into a bitmap data set

using the bitmap mapping schema.

2. The method of claim 1, wherein the conform mapping
schema comprises at least one of: parent attributes, child
attributes, attribute data type, and mapping rules.

3. The method of claim 2, wherein the mapping rules
comprises data source and field.

4. The method of claim 2, wherein the mapping rules
comprises data source, field and mapping logic.

5. The method of claim 1, wherein the conformed user
data set comprises attributes, data type, and user data for
each user, the data type for a given attribute having a
common format for all users independent of the data source.

6. The method of claim 1, wherein the creating the
conformed user data set comprises reconciling conflicts in
data types for the same attribute between different data
sources using the conform mapping schema.

7. The method of claim 1, wherein, after an initial
performance of the analyzing, the analyzing is only per-
formed when the conformed user data set has changed.

8. The method of claim 1, wherein the statistics are
obtained for all the data values of each attribute for all users.

9. The method of claim 8, wherein the statistics comprises
at least one of: data type, number of occurrences of each data
type; min. and max. value of each number (integer or
floating point), and cardinality of each string value.

10. The method of claim 9, wherein the data type is
selected from the group comprising: Boolean, Integer, Float-
ing Point, Date, and String.

11. The method of claim 1, wherein the analyzing the
conformed user data set comprises determining a mapping
strategy for each field based on the statistics.

12. The method of claim 11, wherein the analyzing
comprises determining the type of bitmap data format for a
given field, wherein the type of bitmap comprises one of:
standard bitmap and BSI bitmap.

US 2021/0133203 Al

13. The method of claim 11, wherein the determining is
based on the number of occurrences of a given user attribute
having a given data type is greater than a predetermined
threshold.

14. The method of claim 1, wherein the loading comprises
creating API calls having a field and a Column ID indicative
of a user and at least one of a Row ID and a Value.

15. The method of claim 12, wherein the loading com-
prises retrieving the type of bitmap data format for a given
field and creating API calls based on the mapping strategy.

16. The method of claim 1, wherein the bitmap index user
data set comprises columns corresponding to each of the
users, rows corresponding to fields indicative of the user
attributes in the conform user data set, and values that
correspond to the user data values and a mapping strategy.

17. The method of claim 1, further comprising determin-
ing if the mapping schemas have errors or require updates
and correcting or updating the appropriate schema accord-
ingly.

18. The method of claim 1, further comprising providing
a user interface (UI) which enables queries to be performed
on the bitmap data set.

19. The method of claim 18, wherein the user interface
(UI) provides a plurality selectable fields and conditions
based on the bitmap data for a client to perform a search of
the bitmap index user data set.

20. The method of claim 18, wherein the user interface
(UI) provides an option to edit, remove or add attributes or
attribute values to a mapping schema.

21. A method for converting user data from a plurality of
users and from a plurality of disparate data sources to bitmap
data, comprising:

receiving the user data from the plurality of data sources,

the user data indicative of user attributes;

receiving a conform mapping schema;

creating a conformed user data set for the plurality of

users using the conform mapping schema;

analyzing the conformed user data set to obtain statistics

about the user data for each user attribute;

creating a bitmap mapping schema based on the statistics

about the user data set;

loading the conformed user data set into a bitmap data set

using the bitmap mapping schema; and

providing a user interface (UI) which enables queries to

be performed on the bitmap data set.

22. The method of claim 21, wherein the conform map-
ping schema comprises at least one of: parent attributes,
child attributes, attribute data type, and mapping rules.

23. The method of claim 22, wherein the mapping rules
comprises data source and field.

24. The method of claim 21, wherein the conformed user
data set comprises attributes, data type, and user data for
each user, the data type for a given attribute having a
common format for all users independent of the data source.

25. The method of claim 21, wherein the creating the
conformed user data set comprises reconciling conflicts in
data types for the same attribute between different data
sources using the conform mapping schema.

26. The method of claim 21, wherein the analyzing is only
performed initially or when the conformed user data set has
changed.

27. The method of claim 21, wherein the analyzing the
conformed user data set comprises determining a mapping
strategy for each field based on the statistics.

May 6, 2021

28. The method of claim 27, wherein the analyzing
comprises determining the type of bitmap data format for a
given field based on the mapping strategy, wherein the type
of bitmap comprises one of: Standard bitmap and BSI
bitmap.

29. The method of claim 28, wherein the loading com-
prises retrieving the type of bitmap data format for a given
field and creating API calls based on the mapping strategy.

30. The method of claim 21, wherein the bitmap index
user data set comprises columns corresponding to each of
the users, rows corresponding to fields indicative of the user
attributes in the conform mapping schema, and values that
correspond to the user data values and a mapping strategy.

31. The method of claim 21, wherein the user interface
(UID) provides a plurality selectable fields and conditions
based on the bitmap data for a client to perform a search of
the bitmap index user data set.

32. The method of claim 21, wherein the user interface
(UI) provides an option to edit, remove or add attributes or
attribute values to a mapping schema.

33. A method for converting untyped user data from a
plurality of users to bitmap data, comprising:

receiving an untyped user data set indicative of user

attributes, the user data set having no identification of
data type;

analyzing the user data set to obtain statistics about the

user data for each user attribute for each user, including
identifying data type;

creating a bitmap mapping schema based on the statistics

about the user data set; and

loading the user data set into a bitmap data set using the

bitmap mapping schema.

34. The method of claim 33, wherein the analyzing is only
performed initially or when a structure of the user data set
has changed.

35. The method of claim 33, wherein the statistics are
obtained for all the data values of each attribute for the
plurality users.

36. The method of claim 35, wherein the statistics com-
prises at least one of: number of occurrences of each data
type; min. and max. value of each number (integer or
floating point), and cardinality of each string value.

37. The method of claim 33, wherein the data type is
selected from the group comprising: Boolean, Integer, Float-
ing Point, Date, and String.

38. The method of claim 33, wherein the analyzing the
user data set comprises determining a mapping strategy for
each field based on the statistics.

39. The method of claim 37, wherein the analyzing
comprises determining the type of bitmap data format for a
given field based on the mapping strategy, wherein the type
of bitmap comprises one of: Standard bitmap and BSI
bitmap.

40. The method of claim 38, wherein the determining is
based on the number of occurrences of a given user attribute
having a given data type is greater than a predetermined
threshold.

41. A method for improving the speed of obtaining query
results from a massive, disparate data set, comprising:

converting the data to bitmap data set format, comprising:

receiving the data from the plurality of data sources, the
user data indicative of user attributes;
receiving a conform mapping schema;

US 2021/0133203 Al
14

creating a conformed user data set for the plurality
users using the conform mapping schema;
analyzing the conformed user data set to obtain statis-
tics about the user data for each user attribute;
creating a bitmap mapping schema based on the sta-
tistics about the user data set; and
loading the conformed user data set into a bitmap
data set using the bitmap mapping schema;
querying the bitmap data set;
returning a query result; and
wherein massive comprises larger than 1 million records,
each record having a plurality of attributes and dispa-
rate comprises at least 3 different data sources in at least
3 different data formats or types.

#* #* #* #* #*

May 6, 2021

